
تعداد نشریات | 32 |
تعداد شمارهها | 739 |
تعداد مقالات | 7,175 |
تعداد مشاهده مقاله | 11,734,367 |
تعداد دریافت فایل اصل مقاله | 8,057,504 |
مطالعه حساسیت به وقوع سیل درحوضه آبخیز رازآور با استفاده از روش تحلیل سلسله مراتبی (AHP) | ||
مخاطرات محیط طبیعی | ||
مقاله 4، دوره 8، شماره 19، فروردین 1398، صفحه 35-50 اصل مقاله (2.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/jneh.2018.20760.1280 | ||
نویسندگان | ||
هاشم نوری1؛ کاکا شاهدی* 2؛ محمود حبیب نژاد روشن3؛ عطااله کاویان4؛ مرزبان فرامرزی5 | ||
1دانشجوی دکتری علوم مهندسی آبخیزداری، دانشگاه علوم کشاورزی ومنابع طبیعی ساری | ||
2دانشیار گروه آبخیزداری، دانشگاه علوم کشاورزی ومنابع طبیعی ساری | ||
3استاد گروه آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
4دانشیار گروه آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
5استادیار گروه مرتعداری، دانشگاه ایلام | ||
چکیده | ||
در ایران به دلیل وسعت زیاد، تنوع اقلیمی، تغییرات کاربری اراضی و دگرگونیهای رخ داده درمقیاسهای زمانی و مکانی بارشها، همه ساله سیلابهای عظیمی رخ میدهد. تحقیق حاضر جهت ارزیابی روش تحلیل سلسله مراتبی (AHP) برای تهیه نقشه حساسیت به سیل میباشد. در این تحقیق از پارامترهای طبقات ارتفاعی، شیب، انحنای زمین، فاصله از رودخانه، زمین شناسی، کاربری اراضی، شماره منحنی رواناب و خاک در بخشی از حوضه آبخیز رازآور در استان کرمانشاه استفاده گردید. نقشههای رقومی این پارامترها با استفاده از نرمافزارهای ArcGIS 10.1 و SAGA GIS 2 با فرمت رستری تهیه شدند. احتمال رخداد سیل برای هر کلاس از هر فاکتور و همچنین اهمیت هر فاکتور نسبت به سایر فاکتورها در وقوع سیل توسط نظرات کارشناسی بررسی گردید و در نهایت وزنهای مربوطه در نرم افزار Expert choice محاسبه گردید. سپس وزنهای بدستآمده برای هر کلاس و هر فاکتور توسط سامانه اطلاعات جغرافیایی (GIS) در لایههای مربوطه اعمالگردید و در نهایت نقشههای احتمال سیل منطقه مورد مطالعه تهیه شد. نقشه تهیه شده در نهایت به 5 کلاس شامل حساسیت خیلی زیاد، زیاد، متوسط، کم و خیلی کم به قوع سیل طبقهبندی شد. نتایج حاکی از آن است که فاکتور شیب دارای بیشترین تاثیر بر وقوع سیل بوده و پس از آن مربوط به فاصله از رودخانه و طبقات ارتفاعی میباشد؛ و کمترین تاثیر بر وقوع سیل در منطقه مورد مطالعه مربوط به فاکتور شماره منحنی رواناب میباشد. همچنین نتایج نشان داد 5/48 درصد از حوضه دارای حساسیت زیاد و خیلی زیاد و 9/30 درصد دارای حساسیت کم وخیلی کم به وقوع سیل میباشد. | ||
کلیدواژهها | ||
حوزه آبخیز رازآور؛ احتمال سیل؛ GIS؛ AHP؛ Expert choice | ||
مراجع | ||
مسلمی علیرضا (1385). آشنایی با بلاهای طبیعی شرایط غیرمترقبه اقدامات امدادی. انتشارات معاونت ترویج ومشارکت مردمی وزارت جهاد سازندگی سابق.56 ص. خسروی خه بات، معروفی نیا ادریس، نوحانی ابراهیم، چپی کامران (1395). ارزیابی کارایی مدل رگرسیون لجستیک در تهیه نقشه حساسیت به وقوع سیل. مرتع و آبخیزداری، 69 (4): 863-876. ثروتی محمدرضا، رستمی اکبر، رخدادی فاطمه(1390). امکانسنجی وقوع سیل در حوزه آبخیز لیلان چای مراغه به روش CN. فصلنامه جغرافیایی سرزمین، 8(4): 67-81. قاسمی علی، سلاجقه علی، ملکیان آرش، اسمعلی عوری اباذر(1393). سیلخیزی و تعیین عوامل موثر در آن در حوضه رودخانه بالقلی چای با استفاده از AHP. محیط شناسی، 40: 389-400. Althuwaynee, O.F., Pradhan, B., Lee, S., 2012. Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, Vol. 44, pp. 120–135. Althuwaynee, O.F., Pradhan, B., Park, H.J., Lee, J.H., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, Vol. 114, pp. 21–36. García-Pintado, J., Neal, J.C., Mason, D.C., Dance, S.L., Bates, P.D., 2013. Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modeling. Journal of Hydrology, Vol. 495, pp.252–266. Khosravi, K., Nohani, E., Maroufinia, E., Pourghasemi, H.R. (2016a). A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, Vol. 83, pp. 947–987. Khosravi. K., Pourghasemi, H.R., Chapi, K., Bahri, M. 2016b. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental monitoring and assessment, doi:10.1007/s10661-016-5665-9. 898. Levy, J.K., Hartmann, J., Li, K.W., An, Y., Asgary, A., 2007. Multi‐criteria decision support systems for flood hazard mitigation and emergency response in urban watersheds. Journal of the American Water Resources Association. Vol.43, pp. 346–358. Nampak, H., Pradhan, B., Manap, M.A. 2014. Application of GIS-based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, Vol. 513, pp. 283-300. Oh, H.J., Pradhan, B., 2011. Application of a neuro-fuzzy model to landslide- susceptibility mapping for shallow landslides in a hilly area, Computers & Geosciences, Vol. 37, pp. 1264–1276. Lee, M.J., J.E. Kang and S. Jeon. 2012. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In: Geoscience and Remote Sensing Symposium (IGARSS), Munich. pp. 895-898. Opolot E, 2013. Application of remote sensing and geographical information systems in flood management: a review. Research Journal of Applied Science Engineering and Technology, Vol. 6, pp. 1884-1984. Pradhan, B. 2009. Flood susceptible mapping and risk area delineation using logistic regression, GIS, and remote sensing. Journal of Spatial Hydrology, Vol. 9, pp. 1-18. Tehrany, M.S., B. Pradhan and M.N. Jebur. 2013. Spatial prediction of flood susceptible areas using rule-based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, Vol. 504, pp. 69-79. Saaty, T. L, 1980. The Analytic Hierarchy Process, New York: McGraw Hill Tehrany, M.S., B. Pradhan and M.N. Jebur. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, Vol. 512, pp. 332-343. Tehrany, M.S., Pradhan, B., Mansour, Sh., Ahmad, N. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different Kernel types. Catena, Vol. 125, pp.91-101. Varoonchotikul, P., 2003. Flood Forecasting using Artificial Neural Networks. Balkema, Rotterdam, the Netherlands, pp. 101. Youssef, A.M., Pradhan, B., Hassan, A.M., 2011. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS-based morphometry and satellite imagery. Environmental Earth Sciences, Vol. 62, pp. 611–623. Youssef, A.M., Pradhan, B., Pourghasemi, H.R., Abdullahi, S. 2014. Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS. Geosciences Journal, Vol. 19(1), pp. 113-134. | ||
آمار تعداد مشاهده مقاله: 879 تعداد دریافت فایل اصل مقاله: 888 |