تعداد نشریات | 27 |
تعداد شمارهها | 558 |
تعداد مقالات | 5,770 |
تعداد مشاهده مقاله | 8,027,719 |
تعداد دریافت فایل اصل مقاله | 5,395,415 |
SOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 3، دوره 15، شماره 3، مرداد و شهریور 2018، صفحه 27-46 اصل مقاله (226.97 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2018.3948 | ||
نویسندگان | ||
Atefeh Armand* 1؛ Tofigh Allahviranloo2؛ Zienab Gouyandeh3 | ||
1Young Researchers and Elites Club, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran | ||
2Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
3Department of Mathematics, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran | ||
چکیده | ||
In this paper, we study fuzzy calculus in two main branches differential and integral. Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating $gH$-derivative of a composite function. Two techniques namely, Leibniz's rule and integration by parts are introduced for fuzzy integrals. Furthermore, we prove three essential theorems such as a fuzzy intermediate value theorem, fuzzy mean value theorem for integral and mean value theorem for $gH$-derivative. We derive a Bolzano's theorem, Rolle's theorem and some properties for $gH$-differentiable functions. To illustrate and explain these rules and theorems, we have provided several examples in details. | ||
کلیدواژهها | ||
Generalized Hukuhara derivative؛ Fuzzy Leibniz's rule؛ Integration by parts؛ Fuzzy intermediate value theorem؛ Fuzzy mean value theorem for integral؛ Mean value theorem for $gH$-derivative | ||
مراجع | ||
[1] S. Abbasbandy and B. Asady, Ranking of fuzzy numbers by sign distance, Information Sciences, 176 ( 2006), 2405–2416. [2] S. Abbasbandy and S. Hajighasemi, A Fuzzy Distance between Two Fuzzy Numbers, Communications in Computer and Information Science, 81 (2010), 376–382. [3] T. Allahviranloo, S. Abbasbandy and S. Hajighasemi, A new similarity measure for generalized fuzzy numbers, Neural Computing and Applications, 21 (2012), 289–294. [4] T. Allahviranloo, A. Armand and Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, Journal of Intelligent and Fuzzy Systems, 26 (2014), 1481–1490. [5] T. Allahviranloo, A. Armand, Z. Gouyandeh and H. Ghadiri, Existence and uniqueness of solutions for fuzzy fractional Volterra–Fredholm integro–differential equations, Journal of Fuzzy Set Valued Analysis, 2013 (2013), 1–9. [6] A. Armand and Z. Gouyandeh, Solving two–point fuzzy boundary value problem using variational iteration method, Communications on Advanced Computational Science with Applications, 2013 (2013), 1–10. [7] G. A. Anastassiou, Fuzzy Mathematics:Approximation Theory, Studies in Fuzziness and Soft Computing, Springer–Verlag Berlin Heidelberg,2010. [8] R. J. Aumann, Integrals of set–valued functions, Journal of Mathematical Analysis and Applications, 12 (1965), 1–12. [9] B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177 (2007), 1648–1662. [10] B. Bede and S. Gal, Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 ( 2005), 581– 599. [11] B. Bede and L. Stefanini, Generalized differentiability of fuzzy–valued functions, Fuzzy Sets and Systems, 230 (2013), 119–141. [12] Y. Chalco-Canoa, A. Rufi´an-Lizanab, H. Rom´an–Floresa and M. D. Jim´enez-Gameroa, Calculus for interval–valued functions using generalized Hukuhara derivative and applications, Fuzzy Sets and Systems, 219 (2013), 49–67. [13] L. H. Chen and H. W. Lu, The preference order of fuzzy numbers, Computers and Mathematics with Applications, 44 (2002), 1455–1465. [14] A. Chwastyk and W. Kosiski, Fuzzy calculus with aplications, Mathematica applicanda, 41 (2013), 47–96. [15] W. Congxin and M. Ming, On embedding problem of fuzzy number space: part 3, Fuzzy Sets and Systems, 16 (1992), 281–286. [16] D. Dubois and H. Prade, Towards fuzzy differential calculus–part 1, Fuzzy Sets and Systems, 8 (1982), 1–17. [17] D. Dubois and H. Prade, Towards fuzzy differential calculus–part 2, Fuzzy Sets and Systems, 8 (1982), 105–116. [18] D. Dubois and H. Prade, Towards fuzzy differential calculus–part 3, Fuzzy Sets and Systems, 8 (1982), 225–234. [19] D. Dubois and H. Prade, Operations on fuzzy numbers, International Journal of Systems Science, 9 (1978), 613–626. [20] Z. Gouyandeh, T. Allahviranloo, S. Abbasbandy and A. Armand, A fuzzy solution of heat equation under generalized Hukuhara differentiability by fuzzy Fourier transform, Fuzzy Sets and Systems, 309 (2017), 81–97. [21] M. Hukuhara, Int´egration des applications mesurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj, 10 (1967), 205–229. [22] R. Jain, Decision making in the presence of fuzzy variables, IEEE Trans. Systems Man Cybernetics, 6 (1976), 698–703. [23] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301–317. [24] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215–229. [25] A. Khastan and J. J. Nieto, A boundary value problem for second order fuzzy differential equations, Nonlinear Analysis, 72 (2010), 3583–3593. [26] V. Lakshmikantham and R. N. Mohapatra, Theory of fuzzy differential equations and inclusions, Taylor and Francis, 2003. [27] V. Lakshmikantham, T. GnanaBhaskar and J. VasundharaDevi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, 2006. [28] X. W. Liu and S. L. Han, Ranking fuzzy numbers with preference weighting function expectations, Computers and Mathematics with Applicatmns, 49 (2005), 1731–1753. [29] M. Ma, M. Friedman and A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Sets and Systems, 105 (1999), 133–138. [30] M. Mizumoto and K. Tanaka, The four operations of arithmetic on fuzzy numbers, Systems Computers Controls, 7 (1976), 73–81. [31] D. Mon, C. Cheng and J. Lin, Evaluating weapon system using fuzzy analytic hierarchy process based on entropy weight, Fuzzy Sets and Systems, 62 (1994), 127–134. [32] C. V. Negoita and D. Ralescu, Applications of Fuzzy Sets to Systems Analysis, Wiley, New York, 1975. [33] M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications, 114 (1986), 409–422. [34] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161 (2010), 1564–1584. [35] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval–valued functions and interval differential equations, Nonlinear Analysis, 71 (2009), 1311–1328. [36] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. | ||
آمار تعداد مشاهده مقاله: 1,272 تعداد دریافت فایل اصل مقاله: 1,178 |