تعداد نشریات | 31 |
تعداد شمارهها | 700 |
تعداد مقالات | 6,841 |
تعداد مشاهده مقاله | 11,163,840 |
تعداد دریافت فایل اصل مقاله | 7,505,425 |
TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 10، دوره 15، شماره 3، مرداد و شهریور 2018، صفحه 153-176 اصل مقاله (591.84 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2018.3955 | ||
نویسنده | ||
M. Arefi* | ||
Department of Statistics, Faculty of Mathematical Sciences and Statistics, University of Birjand, Birjand, Iran | ||
چکیده | ||
This paper deals with the problem of testing statistical hypotheses when the available data are fuzzy. In this approach, we first obtain a fuzzy test statistic based on fuzzy data, and then, based on a new signed distance between fuzzy numbers, we introduce a new decision rule to accept/reject the hypothesis of interest. The proposed approach is investigated for two cases: the case without nuisance parameters and the case with nuisance parameters. This method is employed to test the hypotheses for the mean of a normal distribution with known/unknown variance, the variance of a normal distribution, the difference of means of two normal distributions with known/unknown variances, and the ratio of variances of two normal distributions. | ||
کلیدواژهها | ||
fuzzy data؛ Fuzzy test statistic؛ Signed distance؛ Statistical hypothesis؛ Testing hypothesis | ||
مراجع | ||
[1] M. Gh. Akbari and A. Rezaei, Bootstrap testing fuzzy hypotheses and observations on fuzzy statistic, Expert Systems with Applications, 37 (2010), 5782{5787. [2] T. Allahviranloo, S. Abbasbandy, and R. Saneifard, A method for ranking of fuzzy numbers using new weighed distance, Mathematical and Computational Applications, 16 (2011), 359{ 369. [3] M. Arefi and S. M. Taheri, A fuzzy-based approach to testing statistical hypotheses, Interna- tional Journal of Intelligent Technologies and Applied Statistics, 4(1) (2011), 109{132. [4] M. Arefi and S. M. Taheri, Testing fuzzy hypotheses using fuzzy data based on fuzzy test statistic, Journal of Uncertain Systems, 5(1) (2011), 45{61. [5] M. Arefi and S. M. Taheri, A new approach for testing fuzzy hypotheses based on fuzzy data, International Journal of Computational Intelligence Systems, 6(2) (2013), 318{327. [6] B. F. Arnold, An approach to fuzzy hypothesis testing, Metrika, 44 (1996), 119{126. [7] B. F. Arnold, Testing fuzzy hypotheses with crisp data, Fuzzy Sets and Systems 94 (1998), 323{333. [8] C. Bertoluzza, N. Corall, and A. Salas, On a new class of dictances between fuzzy numbers, Mathware & Soft Computing, 2 (1995), 71{84. [9] P. P. Bonissone, Soft computing: the convergence of emerging reasoning technologies, Soft Computing, 1 (1997), 6{18. [10] J. J. Buckley, Fuzzy statistics: hypothesis testing, Soft Computing, 9 (2004), 512{518. [11] M. R. Casals, and M. A. Gil, A note on the operativeness of Neyman-Pearson tests with fuzzy information, Fuzzy Sets and Systems, 30 (1989), 215{220. [12] M. R. Casals, M. A. Gil, and P. Gil, The fuzzy decision problem: an approach to the prob- lem of testing statistical hypotheses with fuzzy information, European Journal of Operation Research, 27 (1986), 371{382. [13] J. Chachi, S. M. Taheri, and R. Viertl, Testing statistical hypotheses based on fuzzy confidence intervals, Austrian Journal of Statistics, 41(4)(2012), 267{286. [14] S. H. Chen and CH Hsieh, Representation, ranking, distance, and similarity of L-R type fuzzy number and application, Australian Journal of Intelligent Information Processing Systems, 6(4) (2000), 217{229. [15] I. Couso, L. Sanchez, Defuzzification of fuzzy p-values, In: Soft Methods for Handling Vari- ability and Imprecision, D. Dubois et al. (Eds.), Advances in Soft Computing, Springer, (2008), 126{132. [16] M. Delgado, J. L. Verdegay, and M. A. Vila, Testing fuzzy hypotheses: A Bayesian approach, In: Approximate Reasoningin Expert Systems, M. M. Gupta, A. Kandel, W. Bandlery, J. B. Kiszka (Eds.), North-Holland, (1985), 307{316. [17] J. G. Dijkman, H. Van Haeringen and S. J. De Lange, Fuzzy numbers, Journal of Mathemat- ical Analysis and Applications, 92(2) (1983), 301{341. [18] P. Filzmoser and R. Viertl, Testing hypotheses with fuzzy data: the fuzzy p-value, Metrika, 59 (2004), 21{29. [19] P. Grzegorzewski, Testing fuzzy hypotheses with vague data, In: Statistical Modeling, Analysis and Management of Fuzzy Data, C. Bertoluzza et al. (Eds.), Springer, Heidelberg, (2002), 213{225. [20] P. Grzegorzewski, Testing statistical hypotheses with vague data, Fuzzy Sets and Systems, 112 (2000), 501{510. [21] C. Kahraman, C. E. Bozdag, D. Ruan and A. F. Ozok, Fuzzy sets approaches to statistical parametric and nonparametric tests, International Journal of Intelligent Systems, 19 (2004), 1{19. [22] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentic-Hall, Englewood Cliffs, NJ, 1995. [23] R. Kruse and K. D. Meyer, Statistics with Vague Data, D. Reidel Publishing Company, Dortrecht, Boston, 1987. [24] X. Li and B. Liu, On distance between fuzzy variables, Journal of Intelligent and Fuzzy Systems, 19(3) (2008), 197{204. [25] J. Liu, L. Martinez, H. Wang, R. M. Rodriguez and V. Novozhilov, Computing with words in risk assessment, International Journal of Computational Intelligence Systems, 3(4) (2010), 396{419. [26] L. Magdalena, What is Soft Computing? Revisiting possible answers, International Journal of Computational Intelligence Systems, 3(2) (2010), 148{159. [27] A. Parchami, S. M. Taheri and M. Mashinchi, Fuzzy p-value in testing fuzzy hypotheses with crisp data, Statistical Papers, 51 (2010), 209{226. [28] A. Parchami, S. M. Taheri and M. Mashinchi, Testing fuzzy hypotheses based on vague ob- servations: a p-value approach, Statistical Papers, 53(2) (2012), 469{484. [29] D. Richards, Advanced Mathematical Methods with Maple, Cambridge University Press, New York, 2002. [30] R. Seising, What is Soft Computing? - Bridging gaps for 21st Century science!, International Journal of Computational Intelligence Systems, 3(2) (2010), 160{175. [31] S. M. Taheri Trends in fuzzy statistics, Austrian Journal of Statistics, 32 (2003), 239{257. [32] S. M. Taheri and M. Arefi, Testing fuzzy hypotheses based on fuzzy test statistic, Soft Com- puting, 13 (2009), 617{625. [33] S. M. Taheri and J. Behboodian, Neyman-Pearson Lemma for fuzzy hypothesis testing, Metrika, 49 (1999), 3{17. [34] S. M. Taheri and J. Behboodian, A Bayesian approach to fuzzy hypotheses testing, Fuzzy Sets and Systems, 123 (2001), 39{48. [35] S. M. Taheri and J. Behboodian, On Bayesian approach to fuzzy testing hypothesis with fuzzy data, Italian Journal of Pure and Applied Mathematics, 19 (2006), 139{154. [36] S. M. Taheri and G. Hesamian A generalization of the Wilcoxon signed-rank test and its applications, Statistical Papers, 54(2) (2013), 457{470. [37] S. M. Taheri and G. Hesamian, Goodman-Kruskal measure of association for fuzzy- categorized variables, Kybernetika, 47(1) (2011), 110{122. [38] H. Torabi, J. Behboodian, and S. M. Taheri Neyman-Pearson Lemma for fuzzy hypotheses testing with vague data, Metrika, 64 (2006), 289{304. [39] W. Trutschnig, G. Gonzalez-Rodriguez, A. Colubi, and M. A. Gil, A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread, Information Sciences, 179 (2009), 3964{3972. [40] R. Viertl, Fuzzy models for precision measurements, Mathematics and Computers in Simu- lation, 79 (2008), 874{878. [41] R. Viertl, Statistical Methods for Fuzzy Data, J. Wiley, Chichester, 2011. [42] J. S. Yao and K. M. Wu, Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets and Systems, 116 (2000), 275{288. [43] Sh. Yosefi, M. Arefi, and M. Gh. Akbari, A new approach for testing fuzzy hypotheses based on likelihood ratio statistic, Statistical Papers, 57 (2016), 665{688. [44] L. A. Zadeh, From computing with numbers to computing with words - from manipulation of measurements to manipulation of perceptions, IEEE Transactions on Circuits and Systems-1: Fundamental Theory and Applications, 46(1) (1999), 105{119. [45] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338{353. | ||
آمار تعداد مشاهده مقاله: 1,178 تعداد دریافت فایل اصل مقاله: 647 |