تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,825 |
تعداد مشاهده مقاله | 8,164,688 |
تعداد دریافت فایل اصل مقاله | 5,462,440 |
A NEW SECRET SHARING SCHEME ADVERSARY FUZZY STRUCTURE BASED ON AUTOMATA | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 15، شماره 4، مهر و آبان 2018، صفحه 1-11 اصل مقاله (299.59 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2018.4111 | ||
نویسندگان | ||
Ali Saeidi Rashkolia1؛ Mohammad Mahdi Zahedi ![]() | ||
1Department of Mathematics, Graduate University of Advanced Technology, Kerman, Iran | ||
2School of Mathematics, Iran University of Science and Technology, Tehran, Iran | ||
چکیده | ||
In this paper, we introduce a new verifiable multi-use multi-secret sharing scheme based on automata and one-way hash function. The scheme has the adversary fuzzy structure and satisfy the following properties: 1) The dealer can change the participants and the adversary fuzzy structure without refreshing any participants' real-shadow. 2) The scheme is based on the inversion of weakly invertible finite automata and its security depends on the properties of the one-way hash functions. 3) The scheme does not encounter time-consuming computations like discrete logarithm problem. 4) The validity of the transmitted data can be verified by the combiner and participants. 5) Every participant has only one reusable real-shadow, whereas the most of other existing schemes have more than one shadow. In addition, the proposed scheme which is based on automata has all the properties of a perfect scheme. Finally, the comparisons among other schemes and our scheme prove the efficiency of our scheme. | ||
کلیدواژهها | ||
Secret sharing؛ Adversary fuzzy structure؛ One-way hash function؛ Finite automaton؛ Weakly invertible | ||
مراجع | ||
[1] G. R. Blakley, Safeguarding cryptographic keys, Proc. of the National Computer Conference, 48 (1979), 313{317. [2] Y. F. Chen, Y. K. Chan, C. C. Huang, M. H. Tsai and Y. P. Chu, A multiple-level vi- sual secret-sharing scheme without image size expansion, Inform. Sciences., 177(21) (2007), 4696{4710. [3] A. Das and A. Adhikari, An efficientmulti-usemulti-secret sharing scheme based on hash function, Appl. Math. Lett., 23(9) (2010), 993{996. [4] M. H. Dehkordi and S. Mashhadi, An efficient threshold verifiable multi-secret sharing, Comp. Stand. Inter., 30(3) (2008), 187{190. [5] M. H. Dehkordi and Y. Farzaneh, A New Verifiable Multi-secret Sharing Scheme Realizing Adversary Structure, Wireless. Pers. Commun., 82(3) (2015), 1749{1758. [6] Y. B. Guo and J. F. Ma, Practical secret sharing scheme realizing generalized adversary structure, J Comput. Sci Technol., 19(4) (2004), 564{569. [7] L. Harn, Efficient sharing (broadcasting) of multiple secrets, IEE. P-Comput. Dig. T., 142(3) (1995), 237{240. [8] J. He and E. Dawson, Multi secret-sharing scheme based on one-way function, Electron. Lett., 31(2) (1995), 93{95. [9] J. He and E. Dawson, Multistage secret sharing based on one-way function, Electron. Lett., 30(19) (1994), 1591{1592. [10] W. Jackson, K. Martin and C. O'Keefe, On sharing many secrets, Advances in Cryptology{ Asiacrypt'94, (1995), 42{54. [11] L. J. Pang, H. Li And Y. Wang, An efficient and secure multi-secret sharing scheme scheme with general access structure, Wuhan Univ. J. Nat. Sci., 11(6) (2006), 1649{1652. [12] H. Qin, Y. Dai and Z. Wang, A secret sharing scheme based on (t, n) threshold and adversary structure, Int. J. Inf. Secur., 8(5) (2009), 379{385. [13] A. Shamir, How to share a secret, Commun. Acm., 22(11) (1979), 612{613. [14] H. M. Sun and S. P. Shieh, An efficient construction of perfect secret sharing schemes for graph-based structures, Comput. Math. Appl., 31(7) (1996), 129{135. [15] H. M. Sun and S. P. Shieh, Secret sharing schemes for graph-based prohibited structures, Comput. Math. Appl., 36(7) (1998), 131{140. [16] R. Tao and S. Chen, The generalization of public key cryptosystem FAPKC4, Chinese. Sci. Bull., 44(9) (1999), 784{790. [17] R. Tao, Finite Automata and Application to Cryptography, Tsinghua University Press, Springer, 2008. [18] M. Van Dijk, W. A. Jackson and K. M. Martin, A general decomposition construction for incomplete secret sharing schemes, Design. Code. Cryptogr., 15(3) (1998), 301{321. [19] Y. Wei, P. Zhong and G. Xiong, A Multi-stage Secret Sharing Scheme with General Access Structures, In 4th International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, (2008), 1{4. [20] L. A. Zadeh, Fuzzy sets, Inform. Control, 8(3) (1965), 338{353. | ||
آمار تعداد مشاهده مقاله: 886 تعداد دریافت فایل اصل مقاله: 405 |