تعداد نشریات | 26 |
تعداد شمارهها | 552 |
تعداد مقالات | 5,709 |
تعداد مشاهده مقاله | 7,973,837 |
تعداد دریافت فایل اصل مقاله | 5,356,075 |
تحلیل تغییرات کاربری اراضی با استفاده از روشهای شیءگرا و زنجیرۀ مارکف در حوضۀ آبریز زیلبیرچای واقعدر آذربایجان شرقی و غربی | ||
فصلنامه جغرافیا و توسعه | ||
مقاله 3، دوره 16، شماره 53، زمستان 1397، صفحه 37-50 اصل مقاله (937.63 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/gdij.2018.4149 | ||
نویسندگان | ||
صغری اندریانی ![]() ![]() | ||
1دانشآموخته دکتری مدیریت محیطی، دانشگاه تبریز، تبریز، ایران | ||
2دانشیار ژئومورفولوژی و سنجش از دور دانشگاه تبریز، تبریز، ایران | ||
3استاد ژئومورفولوژی و سنجش از دور، دانشگاه تبریز، تبریز، ایران | ||
4استاد ژئومورفولوژی و سنجش از دور،دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
هدف از پژوهش حاضر، استخراج و کشف تغییرات کاربری اراضی از تصاویر ماهوارهای با مدل شیءگرا و همچنین پیشبینی این تغییرات با مدل زنجیرۀ مارکف تا سال 2030 در حوضۀ آبریز زیلبیرچای است. با توجه به اینکه تفکیک برخی محصولات از همدیگر مانند گندم آبی و دیم، زراعت آبی و باغات در تصاویر با تفکیک مکانی متوسط مانند تصاویر لندست و روشهای شناختهشدۀ پیکسل پایه بهسختی صورت میگیرد، بنابراین در تحقیق حاضر مدل شیءگرا بر مبنای روش دانشپایه با استفاده از میانگین و انحراف معیار شاخص پوشش گیاهی و ویژگیهای توپوگرافی منطقه، همچنین تصویر OLI با تاریخ 2015 بهکار گرفته شد و اعتبارسنجی آن با ضریب کاپا 86/0 و صحت کلی 89/0 صورت گرفت، سپس نتیجۀ آن در تصویر TM نیز استفاده شد (ضریب کاپا برابر با 83/0 و صحت کلی 87). درنهایت بعد از تجزیهوتحلیل تغییرات رخداده، پیشبینی زمانی کاربریها صورت گرفت. نتایج طبقهبندی تصاویر نشاندهندۀ رشد مساحت کاربریهای مسکونی، باغات و زراعت آبی بهترتیب 15، 42 و 50 km2 در طول 28 سال است که این رشد نشاندهندۀ مصرف زیاد آب در منطقه است. همچنین در 15 سال آینده نیز که براساس الگوی 28 سال قبل و با مدل تحلیل زنجیرۀ مارکف بوده، این رشد بهترتیب تا میزان 8، 27 و 8 km2 خواهد بود. ازطرفی مقایسۀ تناظر به تناظر نقشههای طبقهبندی دو بازۀ زمانی، نشاندهندۀ تبدیل کاربریهای کممصرف مثل گندم آبی به محصولات زراعی آبی است؛ ازاینرو لزوم استفاده از یک مدیریت بهینه و کارآمد بهمنظور دستیافتن به توسعۀ پایدار، مکانیزهکردن سیستمهای آبیاری و کنترل مصرف عوامل انسانی در منطقه اجتنابناپذیر است. | ||
کلیدواژهها | ||
کاربری اراضی؛ روش شیءگرا؛ پیشبینی؛ زنجیرۀ مارکف؛ زیلبیرچای | ||
مراجع | ||
آرخی، صالح (1394). آشکارسازی تغییرات پوشش/ کاربری اراضی با پردازش شیءگرای تصاویر ماهوارهای با استفاده از نرمافزاز Idrisi Selva (مطالعۀ موردی: منطقه آبدانان)، فصلنامۀ علمی- پژوهشی اطلاعات جغرافیایی (سپهر). 24 (95).62-51. اندریانی، صغری (1393). کاربرد تکنیکهای سنجش از دور و سیستم اطلاعات جغرافیایی در بررسی تغییرات کاربری اراضی و تأثیر آن بر دبی رودخانه (مطالعۀ موردی: صوفیچای)،پایاننامۀ کارشناسی ارشد RS & GIS، دکتر محمدحسین رضاییمقدم. گروه سنجش از دور. دانشگاه تبریز. رضاییمقدم، محمدحسین؛ صغری اندریانی؛ خلیل ولیزاده کامران؛ فرهاد الماسپور (1395). تعیین بهترین الگوریتم استخراج کاربری- پوشش اراضی و کشف تغییرات از تصاویر ماهوارهای لندست (مطالعۀ موردی: حوضۀ صوفیچای مراغه)، فضای جغرافیایی. 16 (55). 85-65. علویپناه، کاظم (1389). کاربرد سنجش از دور در علوم زمین، دانشگاه تهران. Batty, M., Xie, Y., & Sun, Z., (1999). Modeling urban dynamics through GIS-based cellular automata, Computers. Environment and Urban Systems, 23: 205-233. Baatz, M & Schäpe, A (2000). Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII. Beiträge zum AGIT-Symposium Salzburg 2000; Strobl, J., Ed.; Herbert Wichmann Verlag: Karlsruhe, Germany, 12–23. Blaschke, T., (2010). Object based image analysis for remote sensing. Photogrammetry and Remote Sensing, 65, 2–16. Chaudhuri, B.B. & Sarkar, N., (1995). Texture segmentation using fractal dimension. Pattern Analysis and Machine Intelligence. IEEE Transactions on, 17(1), 72-77. Congalton, R.G., & Green, K, (1999). Assessing the accuracy of remotely sensed data: principles and practices, Boca Raton: Lewis Publications. Chavez, p., (1996). Image-based atmospheric corrections - Revisited and improved. Photogram Engineering & Remote Sensing, 62: 1025–1036. De Fries, R. S., Hansen, M., & Townshend, J. R. G. (1998). Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in Decision Tree Classifiers. International Journal of Remote Sensing, 19 (16), 3141- 3168. Dragut, L., & Eisank, C., (2012). Automated object based classification of topography from SRTM data, Geomorphology, 141-142, 21–33. Foody, M. G., (2004). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185– 201. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J. G., Bai, X.M., & Briggs, J.M. (2008). Global change and the ecology of cities. Science, 319, 756–760. Gandini, M.L., & Usunoff, E.J., (2004). SCS curve number estimation using remote sensing NDVI in a GIS environmental, Environmental Hydrology, 12, 168-179. Mondal, P., & Southworth, J., (2010). Evaluation of conservation interventions using a cellular automata-Markov model. Forest Ecology Manage, 260, 1716-25. Mathieu, R., Aryal, J., & Chong, A. K., (2007). Object-based classification of Ikonos imagery for mapping large-scale vegetation communities in urban areas. Sensors, 7, 2860-2880. Oruc, M., Marangoz, A.M. & Buyuksalih, G. (2004). Comparison of pixel-based and object-oriented classification approaches using Landsat-7 ETM spectral bands. In Proceedings of XX ISPRS Congress (p.5), 19 July, Istanbul, Turkey. Peng, J., Liu, Y. H., Shen, H., Han, Y., & Pan, Y. J. (2012). Vegetation coverage change and associated driving forces in mountain areas of Northwestern Yunnan, China using RS and GIS. Environmental Monitoring and Assessment, 184, 4787-4798. Pu, R. L., Landry, S., & Yu, Q., (2011). Object-based urban detailed land cover classification Rouse, J.W., R.H. Haas, J.A. Schell., & D.W. Deering., (1973). Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351 I: 309-317. Saadat, H., Adamowski, J., Bonnell, R., Sharifi, F., Namdar, M., & Ale-Ebrahim, S., (2011). Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. ISPRS journal of Photogrammetry and Remote Sensing, 66, 608-619. Singh, A., (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10, 989–1003. Turner, B. L., Lambin, E. F., & Reenberg, A., (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20666–20671. Trimble, (2012). eCognition Developed Reference Book. Trappentreustr. 1D-80339 München, Germany: München, Germany GmbH, p 270. Takada, T., Miyamoto, A., & Hasegawa, S.F., (2010), Derivation of a yearly transition probability matrix for land-use dynamics and its applications, Landscape Ecology, 25: 561–572. Walter, V., (2004). Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing 58 (3-4), 225–238. Yan, G., (2003). Pixel based and object oriented image analysis for coal fire research. Master Thesis, ITC, Netherlands. Yu, W., Zhou, W., Qian, Y., Yan, J., (2016). A new approach for land cover classification and change analysis: Integrating backdating and an object-based method. Remote Sensing of Environment, 177, 37-47. Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E (2005). Land cover classification Zhang, Z. X., Wang, X., Zhao, X. L., Liu, B., Yi, L., Zuo, L. J., & Hu, S. G., (2014). A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sensing of Environment, 149, 142–154. Zhou. W., A. Troy & M. Grove., (2005). Measuring urban parcel Lawn Greenness by using an object-oriented classification approach, Rubenstein School of Environment and Natural Resources, University of Vermont, George D. Aiken Center, 81 Zhou, W. Q., & Troy, A (2008). An object-oriented approach for analyzing and characterizing urban landscape at the Parcel level, Remote sensing, 29 (11), 3119-3135.
| ||
آمار تعداد مشاهده مقاله: 555 تعداد دریافت فایل اصل مقاله: 524 |