تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,825 |
تعداد مشاهده مقاله | 8,162,088 |
تعداد دریافت فایل اصل مقاله | 5,460,782 |
REDUCTION OF INVERTER OUTPUT CURRENT RIPPLE IN CONNECTION OF FUEL CELL TO THE POWER NETWORK | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 15، شماره 5، آذر و دی 2018، صفحه 117-131 اصل مقاله (908.71 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2018.4162 | ||
نویسندگان | ||
H. R. Izadfar* 1؛ S. Gholami Kharkeshi2 | ||
1Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran | ||
2Msc Student in Electrical and Computer Engineering, Semnan University, Semnan, Iran | ||
چکیده | ||
In this paper, a method is introduced which reduces the harmonic distortion of the inverter output current, connecting the fuel cell to the AC load. Using FUZZY LOGIC-PI (FLPI), the controlling method is engaged in optimum tuning of the PI controller coefficients of this converter. This converter has only one DC-AC boost inverter and simultaneously has the task of increasing voltage level and generating the AC power. In order to control the inverter output voltage, an internal current control loop and an external voltage control loop are used. Designing the control of each loop is done separately based on FLPI controller. Simulation results for proposed fuel cell energy system in the presence of this controller imply good performance of FLPI and suitable mitigation of inverter output current ripple. | ||
کلیدواژهها | ||
Boost inverter؛ Dual Loop Control؛ Fuel Cell؛ Fuzzy | ||
مراجع | ||
[1] K. J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley, 1995. [2] R. G. Bloomquist, Direct use geothermal resources, Power Engineering Society Summer Meet- ing, 1 (2002), 15-16. [3] R. O. Caceres and I. Barbi, A boost DC-AC converter: analysis, design, and experimentation, IEEE Transaction on Power Electronics, 14(1) (1999), 134-141. [4] J. I Itoh and F. Hayashi, Ripple current reduction of a fuel cell for a single-phase isolated converter using a DC active filter with a center tap, IEEE Transaction on Power Electronics, 25(3) (2010), 550-556. [5] M. Jang and V. G. Agelidis, A minimum power-processing-stage fuel-cell energy system based on a boost-inverter with a bidirectional backup battery storage, IEEE Transaction on Power Electronics, 26(5) (2011), 1568-1577. [6] J. Kan, S. Xie, Y. Wu, Y. Tang, Z. Yao and R. Chen, Single-Stage and Boost-Voltage Grid- Connected Inverter for Fuel-Cell Generation System, IEEE Transaction on Power Electron- ics, 62(9) (2015), 5480-5491. [7] J. S. Lai, Power conditioning circuit topologies, IEEE Transaction on Power Electronics, 3(2) (2009), 24-34. [8] M. Marzbanda, S. S. Ghazimirsaeidc, H. Uppala and T. Fernandoc, A real-time evaluation of energy management systems for smart hybrid home Microgrids, Electric Power Systems Research, 143 (2017), 624-633. [9] M. Marzbanda, M. Mirhosseini Moghaddamb, M. Funsho Akoredec and G. Khomeyranib, Adaptive load shedding scheme for frequency stability enhancement in microgrids, Electric Power Systems Research, 140 (2016), 78-86. [10] M. Mofia, M. Marzband, M. Savaghebi and J. M. Guerrero, Energy man agreement system based on fuzzy fractional order PID controller for transient stability improvement in micro- grids with energy storage, International Transaction on Electrical Energy Systems, 26(10) (2016), 2087-2106. [11] M. H. Nehrir and C. Wang, Principles of Operation of Fuel Cells, Modeling and Control of Fuel Cells: Distributed Generation Applications, Wiley-IEEE Press, (2009), 29-56. [12] T. Petru and T. Thiringer, PModeling of wind turbines for power system studies, IEEE Transactions on Power Systems, 17(4) (2002), 1132-1139. [13] S. M. Rakhtala and E. Shafiee Roudbari, Fuzzy PID control of a stand-alone system based on PEM fuel cell, Electrical Power and Energy Systems, 78 (2016), 576-590. [14] P. Sanchis, A. Ursaea, E. Gubia and L. Marroyo, Boost DC-AC inverter: a new control strategy, IEEE Transactions on Power Systems, 20(2) (2005), 343-353 [15] K. Sedghisigarchi and A. Feliachi, Dynamic and transient analysis of power distribution systems with fuel Cells-part II: control and stability enhancement, IEEE Transactions on Power Systems, 19(2) (2004), 429-434. [16] I. Sefa1, N. Altin, S. Ozdemir and O. Kaplan, Fuzzy PI controlled inverter for grid interactive renewable energy systems, IET Renewable Power Generation, 9(7) (2015), 729-738. [17] R. J. Wai, M. W. Chen and Y. K. Liu, Design of adaptive control and fuzzy neural network control for single-stage boost inverter, IEEE Transaction on Industrial Electronics, 62(9) (2015), 5434-5445. [18] J. Wang, Fang Z. Peng, J. Anderson, A. Joseph and R. Buffenbarger, Low Cost Fuel Cell Converter System for Residential Power Generation, IEEE Transaction on Industrial Elec- tronics, 19(5) (2004), 1315-1323. [19] R. YR and F. Dimitar P, Essentials of fuzzy modeling and control, Wiley Interscience, 6(4) (1994), 22-24. 20] X. Yu, M. Starke, L. Tolbert and B. Ozpineci, Fuel cell power conditioning for electric power applications: a summary, IET Electric Power Applications, 1(5) (2007), 643-656. [21] W. Zhao, D. Dah-Chuan Lu and V. G. Agelidis, Novel Current Control of Grid-Connected Boost-Inverter with Zero Steady-State Error, 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), (2011), 1267 - 1272. [22] G. R. Zhu, S. C. Tan, Y. Chen and C. K. Tse, Mitigation of Low-Frequency Current Rip- ple in Fuel-Cell Inverter Systems Through Waveform Control, IEEE Transaction on Power Electronics, 28(2) (2013), 779-792. | ||
آمار تعداد مشاهده مقاله: 544 تعداد دریافت فایل اصل مقاله: 306 |