تعداد نشریات | 29 |
تعداد شمارهها | 629 |
تعداد مقالات | 6,359 |
تعداد مشاهده مقاله | 9,726,778 |
تعداد دریافت فایل اصل مقاله | 6,359,310 |
A PRIMER ON FUZZY OPTIMIZATION MODELS AND METHODS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 3، شماره 1، تیر 2006، صفحه 1-21 اصل مقاله (233.69 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2006.425 | ||
نویسندگان | ||
J. M. Cadenas1؛ J. L. Verdegay* 2 | ||
1Departamento de Ingenier´ıa de la Informaci´on y las Comunicaciones. Facultad de Inform´atica., Universidad de Murcia., Campus de Espinardo. 30071-Espinardo. Murcia, Spain | ||
2Departamento de Ciencias de la Computaci´on e Inteligencia Artificial. E.T.S. de Ingenier´ıa Inform´atica, Universidad de Granada., 18071. Granada, Spain | ||
چکیده | ||
Fuzzy Linear Programming models and methods has been one of the most and well studied topics inside the broad area of Soft Computing. Its applications as well as practical realizations can be found in all the real world areas. In this paper a basic introduction to the main models and methods in fuzzy mathematical programming, with special emphasis on those developed by the authors, is presented. As a whole, Linear Programming problems with fuzzy costs, fuzzy constraints and fuzzy coefficients in the technological matrix are analyzed. Finally, future research and development lines are also pointed out by focusing on fuzzy sets based heuristic algorithms. | ||
کلیدواژهها | ||
Fuzzy linear programming؛ Fuzzy optimization؛ Heuristics algorithms؛ Intelligent systems؛ Decision support systems | ||
مراجع | ||
[1] R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment, Management Science, 17 (B) 4 (1970), 141–164. [2] A. Blanco, D. Pelta and J. L. Verdegay, Applying a fuzzy sets-based Heuristic to the protein structure prediction problem, Int’l Journal of Intelligent Systems, 17 (2002), 629–643. [3] A. Blanco, D. Pelta and J. L. Verdegay, A fuzzy valuation-based local search framework for combinatorial problems, Fuzzy Optimization and Decision Making, 1 (2002), 177–193. [4] J. M. Cadenas and J. L. Verdegay, Using fuzzy numbers in linear programming, IEEE Transactions on Systems, Man, and Cybernetics, 27 (B) 6 (1997), 1017–1022. [5] J. M. Cadenas and J. L. Verdegay, Modelos de optimizaci´on con datos i mprecisos, Univesidad de Murcia, Servicio de Publicaciones, 1999. [6] L. Campos, Modelos de la PLD para la resoluci´on de juegos matriciales imprecisos, Tesis doctoral, Universidad de Granada, 1986. [7] L. Campos and J. L. Verdegay, Linear programming problems and ranking of fyzzy numbers, Fuzzy Sets and Systems, 32 (1989), 1–11. [8] M. Delgado, J. L. Verdegay and M. A. Vila, Imprecise costs in mathematical programming problems, Control and Cybernet, 16 (2)(1987), 113–121. [9] M. Delgado, J. L. Verdegay and M. A. Vila, A general model for fuzzy linear programming, Fuzzy Sets and systems, 29 (1989), 21–29. [10] M. Delgado, J. L. Verdegay and M. A. Vila, Relating different approaches to solve linear programming problems with imprecise costs, Fuzzy Sets and Systems, 37 (1990), 33–42. [11] M. Delgado, F. Herrera, J. L. Verdegay and M. A. Vila, Post-optimality analisys on the membership function of a fuzzy linear programming problema, Fuzzy Sets and Systems, 53 (1993), 289–297. [12] D. Dubois and H. Prade, Operations on fuzzy numbers, International Journal Systems Science, 9 (1978), 613–626. [13] D. Dubois and H. Prade, Fuzzy sets and systems. theory and applications, Academic Press, 1980. [14] D. Dubois and H. Prade, Ranking of fuzzy numbers in the setting of possibility theory, Information Science, 30 (1983), 183–244. [15] D. Dubois and H. Prade, The mean value of a fuzzy number, Fuzzy Sets and Systems, 24 (1987), 279–300. [16] M. Fedrizzi, J. Kacprzyk and J. L. Verdegay, A survey of fuzzy optimization and fuzzy mathematical programming, In: Fedrizzi M, Kacprzyk J, Roubens M (eds) Interactive Fuzzy Optimization, Springer Verlag, Berlin, 1991. [17] A. Gonz´alez, M´etodos subjetivos para la comparaci´on de N´umeros difusos, Tesis doctoral, Universidad de Granada, 1988. [18] A. Gonz´alez, A studing of the ranking function approach through mean values, Fuzzy Sets and Systems, 35 (1990), 29–41. [19] F. Herrera, M. Kovacs and J. L. Verdegay, Fuzzy linear programming problems with homogeneous linear fuzzy functions, Presented to IPMU’92, 1992. [20] H. Ishibuchi and H. Tanaka, Multipleobjective programming in optimization of the interval objective function, EJOR, 48 (1990), 219–225. [21] D. Pelta, A. Blanco and J. L. Verdegay, Fuzzy adaptive neighborhood search: Examples of application, In J. L. Verdegay, editor, Fuzzy Sets based Heuristics for Optimization, Studies in Fuzziness and Soft Computing ,Physica-Verlag, 2003. [22] I. Requena, Redes neuronales en problemas de decisi´on con ambiente difuso, Tesis doctoral, Universidad de Granada, 1992. [23] H. Rommelfanger, R. Hanuscheck and J. Wolf, Linear programming with fuzzy objectives Fuzzy Sets and Systems, 29 (1990), 31–48. [24] A. Sancho-Royo, J. L. Verdegay and E. Vergara, Some practical problems in fuzzy sets-based DSS, MathWare and Soft Computing VI, 2-3 (1999), 173–187. [25] H. Tanaka, T. Okuda and K. Asai, On fuzzy mathematical programming, Journal of Cybernetics, 3 (4) (1974), 37–46. [26] H. Tanaka, H. Ichihashi and F. Asai, A formulation of fuzzy linear programming problems based a comparison of fuzzy numbers, Control and Cybernet, 13 (1984), 185–194. [27] J. L. Verdegay, Fuzzy mathematical programming In: Gupta MM , Sanchez E (eds) Fuzzy Information and Decisi´on Processes, 1982. [28] J. L. Verdegay and E. Vergara, Fuzzy termination criteria in knapsack problem algorithms, Mathware and Soft Computing, 2-3 (2000), 89–97. [29] J. L. Verdegay and E. Vergara, Fuzzy sets-based control rules for terminating algorithms, Comp. Science Journal, 10 (1) (2002), 9–27. [30] J. L. Verdegay, Fuzzy sets based heuristics for optimization, Studies in Fuzziness and Soft Computing, Springer Verlag, 2003. [31] X. Wang and E. Kerre, On the classification and the dependencies of the ordering methods, In: Ruan D (ed) Fuzzy Logic Foundation and Industrial Applications, International Series in Intelligent Technologies. Kluwer, 1996. [32] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. [33] L. A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning, Part I, Information Sciences, 8 (1975), 199–249. Part II, Information Sciences, 8 (1975), 301–357. Part III, Information Sciences, 9 (1975), 43–80. [34] Q. Zhu and E. S. Lee, Comparison and ranking of fuzzy numbers, In: Kacprzyk J, Fedrizzi M (eds) Fuzzy Regression Analysis, Onmitech Press Warsan and Physica-Verlag, 1992. [35] H. J. Zimmermann, Optimization in fuzzy environments. Presentado al XXI International TIMS and 46th ORSA Conference, San Juan, Puerto Rico, 1974. [36] H. J. Zimmermann, Description and optimization of fuzzy systems, International Journal of General Systems, 2(1976), 209–215. [37] H. J. Zimmermann, Fuzzy sets, decision making and expert systems, Kluwer Academic Publishers, Boston, 1987. | ||
آمار تعداد مشاهده مقاله: 2,905 تعداد دریافت فایل اصل مقاله: 1,842 |