تعداد نشریات | 27 |
تعداد شمارهها | 557 |
تعداد مقالات | 5,743 |
تعداد مشاهده مقاله | 8,019,524 |
تعداد دریافت فایل اصل مقاله | 5,391,044 |
ADMISSIBLE PARTITION FOR BL-GENERAL FUZZY AUTOMATON | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 15، شماره 7، آذر و دی 2018، صفحه 79-90 اصل مقاله (395.21 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2018.4283 | ||
نویسندگان | ||
M. Shamsizadeh1؛ M. M. Zahedi ![]() | ||
1Department of Mathematics, Graduate University of Advanced Technology, Kerman, Iran | ||
2Department of Mathematics, Shiraz Beranch, Islamic Azad University, Shiraz, Iran | ||
چکیده | ||
In this note, we define the concepts of admissible relation and admissible partition for an arbitrary BL-general fuzzy automaton. In particular, a connection between the admissible partition and the quotient BL-general fuzzy automaton is presented. It is shown that if we use the maximal admissible partition, then we obtain a quotient BL-general fuzzy automaton and this quotient is minimal. Finally, we present some examples to clarify the notions and results of this paper. | ||
کلیدواژهها | ||
BL-general fuzzy automaton؛ Admissible relation؛ Admissible partition؛ Quotient BL-general fuzzy automaton؛ Minimal Automaton | ||
مراجع | ||
[1] K. Abolpour and M . M. Zahedi, Isomorphism between two BL-general fuzzy automata, Soft Computing, 16 (2012), 729-736. [2] W. Deng and D. W. Qiu, Supervisory control of fuzzy discrete event systems for simulation equivalence, IEEE Transactions on Fuzzy Systems, 23 (2015), 178-192. [3] M. Doostfatemeh and S. C. Kremer, New directions in fuzzy automata, International Journal of Approximate Reasoning, 38 (2005), 175-214. [4] C. L. Giles, C. W. Omlin and K. K. Thornber, Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems, Proceedings of IEEE, 87 (1999), 1623-1640. [5] M. M. Gupta, G. N. Saridis and B. R. Gaines, Fuzzy Automata and Decision Processes, North Holland, New York, (1977), 111-175. [6] P. Hajek, Metamathematics of Fuzzy Logic, Trends in Logic, 4, Kluwer, Dordercht, 1998. [7] E. T. Lee and L. A. Zadeh, Note on fuzzy languages, Information Sciences, 1 (1969), 421-434. [8] L. Li and D. Qiu, On the state minimization of fuzzy automata, IEEE Transactions on Fuzzy Systems, 23 (2015), 434-443. [9] D. S. Malik and J. N. Mordeson, Fuzzy Automata and Languages, Theory and Applications, Chapman Hall, CRC Boca Raton, London, New York, Washington DC, 2002. [10] D. S. Malik and J. N. Mordeson, Fuzzy Discrete Structures, Physica-Verlag, New York, (2000), London, 2002. [11] C. W. Omlin, K. K. Thornber and C. L. Giles, Fuzzy finite-state automata can be deter- ministically encoded in recurrent neural networks, IEEE Transactions on Fuzzy Systems, 5 (1998), 76-89. [12] W. Pedrycz and A. Gacek, Learning of fuzzy automata, International Journal of Computa- tional Intelligence and Applications, 1 (2001), 19-33. [13] K. Peeva, Behavior, reduction and minimization of finite L-automata, Fuzzy Sets and Sys- tems, 28 (1988), 171-181. [14] K. Peeva, Equivalence, reduction and minimization of finite automata over semirings, The- oretical Computer Science, 88 (1991), 269-285. [15] D. Qiu, Automata theory based on complete residuated lattice-valued logic, Science in China Series: Information Sciences, 44 (2001), 419-429. [16] D. Qiu, Automata theory based on complete residuated lattice-valued logic (II), Science in China Series F: Information Sciences, 45 (2002), 442-452. [17] D. Qiu, Characterizations of fuzzy finite automata, Fuzzy Sets and Systems, 141 (2004), 391-414. [18] D. Qiu, Pumping lemma in automata theory based on complete residuated lattice-valued logic: A not, Fuzzy Sets and Systems, 157 (2006), 2128-2138. [19] D. Qiu, Supervisory control of fuzzy discrete event systems: a formal approach, IEEE Trans- actions on Systems, Man and CyberneticsPart B, 35 (2005), 72-88. [20] M. Shamsizadeh and M. M. Zahedi and K. Abolpour, Bisimulation for BL-general fuzzy automata, Iranian Journal of Fuzzy Systems, 13(4) (2016), 35-50. [21] V. Topencharov and K. Peeva, Equivalence, reduction and minimization of finite fuzzy au- tomata, Journal of Mathematical Analysis and Applications, 84 (1981), 270-281. [22] W. Wechler, The Concept of Fuzziness in Automata and Language Theory, Akademie-Verlag, Berlin, 1978. [23] W. G. Wee, On Generalization of Adaptive Algorithm and Application of the Fuzzy Sets Concept to Pattern Classication, Ph.D. Thesis, Purdue University, Lafayette, IN, 1967. [24] W. G. Wee and K. S. Fu, A formulation of fuzzy automata and its application as a model of learning systems, IEEE Transactions on Systems, Man and Cybernetics, 5 (1969), 215-223. [25] L. Wu and D. Qiu, Automata theory based on complete residuated lattice-valued logic: Re- duction and minimization, Fuzzy Sets and Systems, 161 (2010), 1635-1656. [26] H. Xing and D. W. Qiu, Automata theory based on complete residuated lattice-valued logic: A categorical approach, Fuzzy Sets and Systems, 160 (2009), 2416-2428. [27] H. Xing and D. W. Qiu, Pumping lemma in context - free grammar theory based on complete residuated lattice-valued logic, Fuzzy Sets and Systems, 160 (2009), 1141 -1151. [28] H. Xing, D. W. Qiu and F. C. Liu, Automata theory based on complete residuated lattice- valued logic: Pushdown automata, Fuzzy Sets and Systems, 160 (2009), 1125-1140. [29] H. Xing, D. W. Qiu, F. C. Liu and Z. J. Fan, Equivalence in automata theory based on complete residuated lattice-valued logic, Fuzzy Sets and Systems, 158 (2007), 1407-1422. | ||
آمار تعداد مشاهده مقاله: 454 تعداد دریافت فایل اصل مقاله: 233 |