تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,159 |
تعداد مشاهده مقاله | 9,098,481 |
تعداد دریافت فایل اصل مقاله | 5,935,396 |
SOME INTUITIONISTIC FUZZY CONGRUENCES | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 5، دوره 3، شماره 1، تیر 2006، صفحه 45-57 اصل مقاله (207.93 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2006.436 | ||
نویسندگان | ||
Kul Hur ![]() | ||
1Division of Mathematics and Informational Statistics, and Institute of Basic Natural Science, Wonkwang University, Iksan, Chonbuk, Korea 570- 749 | ||
2Dept. of Mathematics Education, Woosuk University, Hujong-Ri Samrae-Eup, Wanju-kun Chonbuk, Korea 565-701 | ||
چکیده | ||
First, we introduce the concept of intuitionistic fuzzy group congruence and we obtain the characterizations of intuitionistic fuzzy group congruences on an inverse semigroup and a T^{*}-pure semigroup, respectively. Also, we study some properties of intuitionistic fuzzy group congruence. Next, we introduce the notion of intuitionistic fuzzy semilattice congruence and we give the characterization of intuitionistic fuzzy semilattice congruence on a T^{*}-pure semigroup. Finally, we introduce the concept of intuitionistic fuzzy normal congruence and we prove that (IFNC(E_{S}), $\cap$, $\vee$) is a complete lattice. And we find the greatest intuitionistic fuzzy normal congruence containing an intuitionistic fuzzy congruence on E_{S}. | ||
کلیدواژهها | ||
T-pure semigroup؛ Intuitionistic fuzzy set؛ intuitionistic fuzzy congruence؛ intuitionistic fuzzy group congruence؛ intuitionistic fuzzy semilattice congruence؛ intuitionistic fuzzy normal congruence | ||
مراجع | ||
[1] K. T. Atanassov, Intuitionistic fuzzy sets, in :V.Sgurev. Ed., VII ITKR0 s Session, Sofia, June 1983 Central Sci. and Techn, Library, Bul. Academy of Sciences, 1984. [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96. [3] B. Banerjee and D. Kr. Basnet, Intuitionistic fuzzy subrings and ideals, Journal of Fuzzy Math., 11 (1) (2003), 139-155. [4] G. Birkhoff, Lattice Theory, A.M.S.Colloquium Publication, Vol XXV, 1967. [5] R. Biswas, Intuitionistic fuzzy subgroups, Mathematical Forum, X (1989), 37-46. [6] H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, 78 (78)(1996), 293-303 [7] D. C¸ oker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81-89. [8] D. C¸ oker and A.Haydar Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, Journal of Fuzzy Math., 3 (1995), 899-909. [9] P. Das, Lattice of fuzzy congruences in inverse semigroups, Fuzzy Sets and Systems, 91 (1997), 399-408. [10] G. Deschrijver and E. E. Kerre, On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems, 136 (2003), 333-361. [11] H. G¨ur¸cay, D. C¸ oker and A. Haydar Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, Journal of Fuzzy Math., 5 (1997), 365-378. [12] J. M Howie, An Introduction to Semigroup Theory Academic Press, NewYork, 1976. [13] K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy subgroupids, International Journal of Fuzzy Logic and Intelligent Systems, 3 (1) (2003), 72-77. [14] K. Hur, H. W. Kang and H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam Mathematical Journal, 25 (2) (2003), 19-41. [15] K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy congruences on a lattice, Journal of Appl.Math.and Computing, 18(2005), Journal of Appl.Math. Computing, 18 (1-2) (2005), 465-486. [16] K. Hur, Y. B. Jun and J. H. Ryou, Intuitionistic fuzzy topological groups, Honam Math. Journal, 26 (2) (2004), 163-192. [17] K. Hur, J. H. Kim and J. H. Ryou, Intuitionistic fuzzy topological spaces, Journal of Korea Soc, Math. Educ. Ser. B: Pure Appl. Math., 11 (3) (2004), 243-265. [18] K. Hur, S. Y. Jang and Y. B. Jun, Intuitionistic fuzzy congruences, Far East Journal of Math.Sci., 17 (1) (2005), 1-29. [19] K. Hur, S. Y. Jang and Y. S. Ahn, Intuitionistic fuzzy equivalence relations, Honam Math. Journal,27 (2) (2005), 159-177. [20] N. Kuroki, On a weakly idempotent semigroup in which the idempotents are central, Joetsu, J. Math, Educ., 2 (1987), 19-28. [21] N. Kuroki,T-pure Archimedean semigroups, Comment. Math. Univ. St. Pauli, 31 (1982), 115-128. [22] N. Kuroki, Fuzzy congruence and fuzzy normal subgroups, Inform.Sci., 66 (1992), 235-243. [23] N. Kuroki, Fuzzy congruences on T-pure semigroups, Inform.Sci., 84 (1995), 239-246. [24] N. Kuroki, Fuzzy congruences on inverse semigroups, Fuzzy Sets and Systems, 87 (1997), 335-340. [25] S. J. Lee and E. P. Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc., 37 (1) (2000), 63-76. [26] M. Samhan, Fuzzy congruences on semigroups, Inform.Sci., 74 (1993), 165-175. [27] T. Yijia, Fuzzy congruences on a regular semigroup, Fuzzy sets and Systems, 117 (2001), 447-453. [28] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353. | ||
آمار تعداد مشاهده مقاله: 2,480 تعداد دریافت فایل اصل مقاله: 1,525 |