تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,822 |
تعداد مشاهده مقاله | 8,158,632 |
تعداد دریافت فایل اصل مقاله | 5,458,172 |
GENERALIZED FUZZY POLYGROUPS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 6، دوره 3، شماره 1، تیر 2006، صفحه 59-75 اصل مقاله (213.19 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2006.438 | ||
نویسندگان | ||
B. Davvaz ![]() | ||
1Department of Mathematics, Yazd University, Yazd, Iran | ||
2Dipartimento Di Matematica E Informatica, Via Delle Scienze 206, 33100 Udin, Italy | ||
چکیده | ||
small Polygroups are multi-valued systems that satisfy group-like axioms. Using the notion of “belonging ($\epsilon$)” and “quasi-coincidence (q)” of fuzzy points with fuzzy sets, the concept of ($\epsilon$, $\epsilon$ $\vee$ q)-fuzzy subpolygroups is introduced. The study of ($\epsilon$, $\epsilon$ $\vee$ q)-fuzzy normal subpolygroups of a polygroup are dealt with. Characterization and some of the fundamental properties of such fuzzy subpolygroups are obtained. ($\epsilon$, $\epsilon$ $\vee$ q)-fuzzy cosets determined by ($\epsilon$, $\epsilon$ $\vee$ q)-fuzzy subpolygroups are discussed. Finally, a fuzzy subpolygroup with thresholds, which is a generalization of an ordinary fuzzy subpolygroup and an ($\epsilon$, $\epsilon$ $\vee$ q)-fuzzy subpolygroup, is defined and relations between two fuzzy subpolygroups are discussed. | ||
کلیدواژهها | ||
Polygroups fuzzy set؛ ($\epsilon$؛ $\epsilon$ $\vee$ q)-fuzzy subpolygroup؛ Fuzzy logic؛ Implication operator | ||
مراجع | ||
[1] N. Ajmal and K. V. Thomas, A complete study of the lattice of fuzzy congruence and fuzzy normal subgroups, Information Sciences, 82 (1995), 197-218. [2] R. Ameri and M. M. Zahedi, Hyperalgebraic systems, Italian J. Pure Appl. Math., 6 (1999), 21-32. [3] J. M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl., 69 (1979), 124-130 [4] S. K. Bhakat, (2, 2 _q)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems, 112 (2000), 299-312. [5] S. K. Bhakat, (2 _q)-level subsets, Fuzzy Sets and Systems, 103 (1999), 529-533. [6] S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51 (1992), 235-241. [7] S. K. Bhakat and P. Das, (2, 2 _q)-fuzzy subgroup, Fuzzy Sets and Systems, 80 (1996), 359-368. [8] S. K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems, 81 (1996), 383-393. [9] P. Bhattacharya, Fuzzy subgroups: some characterizations. II, Information Sciences, 38 (1986), 293-297. [10] P. Bonansinga and P. Corsini, Sugli omomorfismi di semi-ipergruppi e di ipergruppi, B.U.M.I., 1-B, 1982. [11] S. D. Comer, Polygroups derived from cogroups, J. Algebra, 89 (1984), 397-405. [12] S. D. Comer, Combinatorial aspects of relations, Algebra Universalis, 18 (1984), 77-94. [13] S. D. Comer, Extension of polygroups by polygroups and their representations using colour schemes, Lecture notes in Meth., No 1004, Universal Algebra and Lattice Theory, (1982), 91-103. [14] S. D. Comer, A new fundation for theory of relations, Notre Dame J. Formal Logic, 24 (1983), 81-87. [15] S. D. Comer, Hyperstructures associated with character algebra and color schemes, New Frontiers in Hyperstructures, Hadronic Press, (1996), 49-66. [16] P. Corsini, Prolegomena of hypergroup theory, Second Edition, Aviani Editor, 1993. [17] P. Corsini, A new connection between hypergroups and fuzzy sets, Southeast Asian Bull. Math., 27 (2)(2003), 221-229. [18] P. Corsini, Join spaces, power sets, fuzzy sets, Proceedings of the fifth Int. Congress on Algebraic Hyperstructures, Jasi, Romania, July 4-10, 1993, Hadronic Press, Inc., Palm Harbor, 1994. [19] P. Corsini and V. Leoreanu, Applications of hyperstructures theory, Advanced in Mathematics, Kluwer Academic Publishers, 2003. [20] P. Corsini and V. Leoreanu, Fuzzy sets and join spaces associated with rough sets, Rend. Circ. Mat., Palarmo 51 (2002), 527-536. [21] P. Corsini and I. Tofan, On fuzzy hypergroups, Pure Math. Appl., 8 (1997), 29-37. [22] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 85 (1981), 264-269. [23] B. Davvaz, Fuzzy and anti fuzzy subhypergroups, Proc. International Conference on Intelligent and Cognitive Systems, (1996), 140-144. [24] B. Davvaz, Fuzzy Hv-groups, Fuzzy Sets and Systems, 101 (1999), 191-195. [25] B. Davvaz, Fuzzy Hv-submodules, Fuzzy Sets and Systems, 117 (2001), 477-484. [26] B. Davvaz and N. S. Poursalavati,On polygroup hyperrings and representations of polygroups, J. Korean Math. Soc., 36 (6)(1999), 1021-1031. [27] B. Davvaz, On polygroups and weak polygroups, Southeast Asian Bull. Math., 25 (2001), 87-95. [28] B. Davvaz, Elementary topics on weak polygroups, Bull. Korean Math. Soc., 40 (1) (2003), 1-8. [29] B. Davvaz, Fuzzy weak polygroups, Proc. 8th International Congress on Algebraic Hyperstructures and Applications, 1-9 Sep., 2002, Samothraki, Greece, Spanidis Press, (2003), 127-135. [30] B. Davvaz, Polygroups with hyperoperators, J. Fuzzy Math., 9 (4) (2001), 815-823. [31] B. Davvaz, TL-subpolygroups of a polygroup, Pure Math. Appl., 12 (2) (2001), 137-145. [32] B. Davvaz, On polygroups and permutation polygroups, Math. Balkanica (N.S.) 14 (1-2) (2000), 41-58. [33] A. Hasankhani and M. M. Zahedi, F-polygroups and fuzzy sub-F-polygroups, J. Fuzzy Math. 6 (1) (1998), 97-110. [34] S. Ioulidis, Polygroups et certains de leurs properietes, Bull. Greek Math. Soc., 22 (1981), 95-104. [35] Ath. Kehagias, L-fuzzy join and meet hyperoperations and the associated L-fuzzy hyperalgebras, Rend. Circ. Mat., Palermo, 51 (2002), 503-526. [36] Ath. Kehagias, An example of L-fuzzy join space, Rend. Circ. Mat., Palermo, 52 (2003), 322-350. [37] Leoreanu, Direct limit and inverse limit of join spaces associated with fuzzy sets, Pure Math. Appl., 11 (2002), 509-512. [38] F. Marty, Sur une generalization de la notion de group, 8th Congress Math. Scandenaves, Stockholm, (1934), 45-49. [39] J. Mittas, Hypergroupes canoniques, Math. Balkanica, Beograd, 2 (1972), 165-179. [40] W. Prenowitz, Projective geometries as multigroups, Amer. J. Math., 65 (1943), 235-256. [41] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517. [42] R. Roth, Character and conjugacy class hypergroups of a finite group, Annali di Matematica Pura ed Appl., 105 (1975), 295-311. [43] I. Tofan and A. Volf, On some connections betyween hyperstructures and fuzzy sets, International Algebra Conference (Ia¸si, 1998) Ital. J. Pure Appl. Math., 7 (2000), 63-68. [44] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc, 115, Palm Harber, USA 1994. [45] M. S. Ying, On standard models of fuzzy modal logics, Fuzzy Sets and Systems, 26 (1988) 357-363. [46] X. Yuan, C. Zhang and Y. Ren, Generalized fuzzy groups and many-valued implications, Fuzzy Sets and Systems, 138 (2003), 205-211. [47] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353. [48] M. M. Zahedi, M. Bolurian and A. Hasankhani, On polygroups and fuzzy subpolygroups, J. Fuzzy Math., 3 (1995), 1-15. [49] M. M. Zahedi and A. Hasankhani, F-polygroups I, J. Fuzzy Math., 4 (3) (1996), 533-548. [50] M. M. Zahedi and A. Hasankhani, F-polygroups II, Information Sciences, 89 (3-4)(1996), 225-243. [51] M. M. Zahedi, H. Kouchi and H. Moradi, (Anti)-fuzzy (normal) sub-F-polygroups and fuzzy -coset, J. Discrete Math. Sci. Cryptography, 5 (1) (2002), 85-104. | ||
آمار تعداد مشاهده مقاله: 2,700 تعداد دریافت فایل اصل مقاله: 1,594 |