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Abstract
This paper first improves Chen and Hsieh’s definition of generalized fuzzy numbers, which makes it the generalization
of definition of fuzzy numbers. Secondly, in terms of the generalized fuzzy numbers set, we introduce two different
kinds of orders and arithmetic operations and metrics based on the λ-cutting sets or generalized λ-cutting sets, so
that the generalized fuzzy numbers are integrated into a partial ordering set, a semi-ring and a complete non-separable
metric space. Again, through two isomorphism theorem, the relationship between generalized fuzzy number space and
fuzzy number space is established. Finally, as an application of generalized fuzzy numbers, the concept of continuous
generalized fuzzy number-valued functions is introduced. And it is pointed out that many results of trapezoidal
generalized fuzzy numbers can also be extended to generalized fuzzy numbers.
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1 Introduction
Since Zadeh [33] put forward the concept of fuzzy sets, the fuzzy number is introduced by Chang and Zadeh [1]
subsequently, and it has been made much deeper by many authors [7, 9, 12, 13, 19, 20, 21, 23, 25, 26] etc.. Now the
theory of fuzzy number has become the fundamental of fuzzy analysis [7, 21, 29]. Meanwhile, generalized fuzzy numbers
have been defined by Chen and Hsieh [2], and also drawn much attentions in theory and practice. Recently, many
investigations on the field such as ranking and similarity measure of generalized fuzzy numbers have been conducted
[11, 14, 18, 24]. Their repeatedly applications in risk analysis [3, 4, 5, 16, 22, 30], transportation problems [10, 17],
decision making [32] and pattern recognition [8] are also shown. But from the mathematics viewpoint, theoretically, it
needs to point out that the existing theory of generalized fuzzy numbers comparing with the theory of fuzzy numbers
is obviously lacking, at least, as follows:

(i) The definition of generalized fuzzy numbers [Chen and Hsieh [2]] is not “general”, it does not include usual fuzzy
numbers;

(ii) The definition of generalized fuzzy numbers [Chen and Hsieh [2]] includes an error, i.e. real number or interval
number is not regarded as special generalized fuzzy numbers, since their membership functions do not satisfy the
condition—“continuity”;

(iii) Most of the results are mainly limited to the special generalized fuzzy numbers, such as generalized trapezoidal
fuzzy number, resulting in the lacking of generality.

Based on above considerations, the general theory on generalized fuzzy number needs to be established. At least,
they should include the redefinition, orders, arithmetic operations and metrics. They can not only make the usual
theory of fuzzy numbers as special one, but also be applied to other aspects practically.

The remainder of the paper consists of three sections. As preliminaries in section 2, we shall remind some basic facts
of interval numbers, fuzzy numbers and Chen and Hsieh’s generalized fuzzy numbers. Meanwhile, the shortcomings of
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Chen and Hsieh’s are indicated. As the main part, section 3 is divided into four subsections, they are the definition
of generalized fuzzy numbers, the set of the same height h-generalized fuzzy numbers, the set of all different heights
generalized fuzzy numbers, and a classification of the set of generalized fuzzy numbers. Some results are shown in the
section. These include generalized decomposition theorem and generalized representation theorems, two different kinds
of orders, arithmetic operations and metrics, and two isomorphism theorems. Some properties such as the metric space
of generalized fuzzy numbers are completely proved. All of them are the generalization of the corresponding results of
fuzzy numbers. In section 4, as an application, the concept of continuously generalized fuzzy number valued functions
is introduced. At last, in the concluding remarks, it is indicated that many results existing for trapezoidal generalized
fuzzy numbers can be extended to the case of generalized fuzzy numbers, and the differential and integral for generalized
fuzzy number valued functions can be expected.

Throughout the paper, the following symbols will used.
R: the set of all real number;
R+: the set of non-negative real number;
“∨”: “sup”, “ ∧” :“inf”;
F (R) = {Ã : µÃ : R→ [0, 1]}: the set of fuzzy sets on R;
Aλ: λ-cutting set of Ã, Aλ = µ−1

Ã
[λ, 1] = {x ∈ R : µÃ(x) ≥ λ}, for λ ∈ [0, 1];

µÃ(x) or Ã(x): the membership function.

2 Preliminaries
In this section, we shall remind some concepts on interval numbers, fuzzy numbers and Chen and Hsieh’s generalized
fuzzy numbers, and point out the shortcomings of Chen and Hsieh’s definition [9, 21, 30].

Let X be a nonempty set.
Given a relation “≤” on X, a, b, c ∈ X and the following conditions:
(i) reflexivity: a ≤ a;
(ii) anti-symmetric: a ≤ b, b ≤ a⇒ a = b;
(iii) transitivity: a ≤ b, b ≤ c⇒ a ≤ c;
If conditions (i) an are d (iii) are satisfied, then (X,≤) is said to be a quasi-ordering set,
If conditions (i)–(iii) are satisfied, then (X,≤) is said to be a partial ordering set.
Let (X,+, ·) be a closed algebra system, and a, b, c ∈ X. If the following conditions are satisfied:
(i) associative: (a+ b) + c = a+ (b+ c); (a · b) · c = a · (b · c);
(ii) commutative: a+ b = b+ a, a · b = b · a;
(iii) distributive: (a+ b) · c = a · c+ b · c;
(iv) a+ 0 = 0 + a = a, a · 1 = 1 · a = a, 0, 1 ∈ X,
then (X,+, ·) is called a commutative semi-ring.
Let d : X ×X → R+ and the following conditions be given:
(i) d(x, x) ≥ 0, for all x ∈ X
(ii) d(x, y) = 0 ⇔ x = y, for x, y ∈ X
(iii) d(x, y) = d(y, x), for all x, y ∈ X
(iv) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X
If conditions (i), (iii) and (iv) are satisfied, then (X, d) is called a quasi-metric space,
If conditions (i)–(iv) are satisfied, then (X, d) is called a metric space.

2.1 Interval Numbers
An element in I(R) = {ā = [a−, a+] : −∞ < a− ≤ a+ < +∞} is called an interval number, see e.g. [9, 21, 30]. It is
easy to see that r = [r, r] ∈ I(R) for r ∈ R, so we have R ⊂ I(R). I(R+) is the set of non-negative interval numbers.

Let ā, b̄ ∈ I(R). We define
ā ≤ b̄⇔ a− ≤ b−, a+ ≤ b+;
ā+ b̄ = [a− + b−, a+ + b+];
ā · b̄ = [min{a−b−, a−b+, a+b−, a+b+},max{a−b−, a−b+, a+b−, a+b+}];
d(ā, b̄) = max{|a− − b−| , |a+ − b+|},

Then
(i) (I(R),≤) is a partial ordering set;
(ii)(I(R+),+, ·) is a commutative semi-ring;
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(iii) (I(R), d) is a complete metric space.

2.2 Fuzzy Numbers
Definition 2.1. A fuzzy set ã ∈ F (R) is said to be a fuzzy number (see e.g. [7, 9, 12, 30]) if it satisfies the following
conditions:

(i) ã is normal, i.e. there exists an x0 ∈ R, such that µã(x0) = 1;
(ii) µã(x) is upper semi-continuous, i.e. µ−1

ã [λ, 1] is closed for all λ ∈ [0, 1];
(iii) ã is fuzzy convex, i.e. µã(λx+ (1− λ)y) ≥ min{µã(x), µã(y)} for all x, y ∈ R, λ ∈ [0, 1];
(iv) the support of ã is bounded, i.e. ā0 = cl{x ∈ R : ã(x) > 0} is bounded.

If the support of a fuzzy number ã is included in R+, then the fuzzy number is said to be non-negative. The set of
all fuzzy numbers (resp. non-negative fuzzy numbers) on R is written by R̃ (resp. R̃+).

Let ã, b̃ ∈ R̃. It is defined as
ã ≤ b̃⇔ āλ ≤ b̄λ, for all λ ∈ [0, 1];
(ã ∗ b̃)λ = āλ ∗ b̄λ, for all λ ∈ [0, 1], ∗ ∈ {+, ·};
d∞(ã, b̃) = sup{d(āλ, b̄λ) : λ ∈ [0, 1]};

Then
(i) (R̃,≤) is a partial ordering set;
(ii) (R̃+,+, ·) is a commutative semi-ring;
(iii) (R̃, d∞) is a complete metric space.

Theorem 2.2 (Representation theorem I, see e.g. [11, 12, 24, 26]). Let ã ∈ R̃. Then
(i) āλ ∈ I(R), for all λ ∈ [0, 1];
(ii) āλ2

⊆ āλ1
, for 0 ≤ λ1 ≤ λ2 ≤ 1;

(iii)
∞
∩

n=1
āλn

= āλ, where λn, λ ∈ (0, 1], n ≥ 1, λn ↑ λ;

Conversely, for {ā(λ) : λ ∈ [0, 1]} ⊂ I(R), satisfies conditions (i)-(iii), then there exists ã ∈ R̃, such that āλ = ā(λ),
for λ ∈ (0, 1], ā0 ⊆ ā(0).

Theorem 2.3 (Representation theorem II, see e.g. [11, 12, 24, 26]). Let ã ∈ R̃,
a−(λ) = a−λ , a+(λ) = a+λ , for λ ∈ [0, 1]. Then
(i) a−(λ) is non-decreasing and left continuous on (0, 1];
(ii) a+(λ) is non-increasing and left continuous on (0, 1];
(iii) a−(1) ≤ a+(1);
(iv) a−(λ), a+(λ) is right continuous at λ = 0.

Conversely, for the functions satisfying the above conditions (i)–(iv), there exists only one ã ∈ R̃, such that āλ =
[a−(λ), a+(λ)], λ ∈ [0, 1].

2.3 Chen and Hsieh’s Generalized Fuzzy Numbers
Definition 2.4 (Chen and Hsieh, see [2]). Let a, b, c, d ∈ R, and −∞ < a ≤ b ≤ c ≤ d < +∞, h ∈ [0, 1]. Then a fuzzy
set ã ∈ F (R) is said to be a generalized fuzzy number if it satisfies the following conditions:

(i) µã : R→ (0, h] is continuous;
(ii) µã(x) is strictly increasing on [a, b);
(iii) µã(x) = h, x ∈ [b, c];
(iv) µã(x) is strictly decreasing on (c, d];
(v) µã(x) = 0, otherwise, h is said to be the height of ã.

If µã(x) is linear on [a, b) and (c, d], then ã is called a generalized trapezoidal fuzzy number, and is written by
(a, b, c, d;h).

For a generalized trapezoidal fuzzy number (a, b, c, d;h).
If b = c, then it is called a generalized triangular fuzzy number, and written by (a, b, d;h);
If a = b, c = d, h = 1, then it degenerates into an interval number;
If a = b = c = d, h = 1, then it degenerates into a real number.

Remark 2.5. On “arithmetic operations”: So far, we can only find the arithmetic operations on generalized trapezoidal
fuzzy numbers in the existing literature (See [3, 4, 5, etc.]).
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For two generalized trapezoidal fuzzy numbers,

ã1 = (a1, b1, c1, d1;h1), ã2 = (a2, b2, c2, d2;h2),

It is defined as
ã1 + ã2 = (a1 + a2, b1 + b2, c1 + c2, d1 + d2;h1 ∧ h2) (1)

ã1 · ã2 = (a, b, c, d;h1 ∧ h2) (2)
, where

a = a1a2 ∧ d1d2,
b = a1b2 ∧ a1c2 ∧ b1b2 ∧ b1c2 ∧ b2c1 ∧ c1c2 ∧ c1d2 ∧ b1d2
c = a1b2 ∨ a1c2 ∨ b1b2 ∨ b1c2 ∨ b2c1 ∨ c1c2 ∨ c1d2 ∨ b1d2
d = a1a2 ∨ d1d2

All the operations are determined by the four vertex points and the heights.

Remark 2.6. On “orders”: In the existing literatures, e.g. [2, 4, 5, 18, 32, etc.], there exist various kinds of ranking
methods on generalized trapezoidal fuzzy numbers, the popular one is constructing a ranking function from the set of
generalized trapezoidal fuzzy numbers to the set of real numbers, i.e. K : GR̃→ R, and

ã1 ≺ ã2 ⇔ K(ã1) < K(ã2)

ã1 ≻ ã2 ⇔ K(ã1) > K(ã2)

ã1 ≈ ã2 ⇔ K(ã1) = K(ã2)

for ã1 = (a1, b1, c1, d1;h1), ã2 = (a2, b2, c2, d2;h2)
For example, in ref. [16], there is the following ranking function

K(ã1) =
1

2
αh1(a1 + b1) +

1

2
(1− α)h1(c1 + d1), α ∈ [0, 1].

(3)

Remark 2.7. On“metrics”: In the existing literature [3, 8, 16, 17, 31], etc., there exist various kinds of distances or
similarity measures for two generalized trapezoidal fuzzy numbers.

For example, see [29], Xu et al used distance and COG concepts to present a distance and a similarity measure, i.e.

d(ã1, ã2) =

√
(x∗ã1

− x∗ã2
)2 + (y∗ã1

− y∗ã2
)2

√
1.25 (4)

S(ã1, ã2) = 1− 1

2
× (

|a1 − a2|+ |b1 − b2|+ |c1 − c2|+ |d1 − d2|
4

+ d(ã1, ã2)) (5)

where x∗ãi
, y∗ãi

determine the COG of ãi = (ai, bi, ci, di;hi), i = 1, 2, that is,

y∗ãi
=

hi×(
ci−bi
di−ai

+2)

6
, if ai ̸= di

hi
2
, if ai = di (6)

x∗ãi
=

{
y∗
ãi

×(bi+ci)+(ai+di)×(hi−y∗
ãi

)

2hi
, if hi ̸= 0

ai+di
2

, if hi = 0 (7)

All of them are also related to generalized trapezoidal fuzzy numbers, and determined by the four vertex points and
the heights.
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Remark 2.8. By comparing the Definitions 2.1 and 2.4, we can find the following facts:
(i) The generalized fuzzy number is not a generalization of the fuzzy number. Since based Definition 2.2, the

membership function must be continuous, strictly increasing on [a, b) and strictly decreasing on (c, d], but by Definition
2.1, it can shown that the membership function is upper semi-continuous, increasing on [a, b) and decreasing on (c, d]
but may not strictly.

(ii) There exists an error in Definition 2.4, that is if a = b, c = d, then µã(x) does not satisfy continuity.
(iii) Based on Definition 2.4, it is known that a real number and an interval number is not generalized fuzzy number,

since for a ∈ R, ā ∈ I(R), the membership function is just the characteristic function, i.e.

χa(x) =

{
1, x = a

0, x ̸= a
, χā(x) =

{
1, x ∈ ā

0, x /∈ ā
.

But χa, χā are not continuous.
From (i)–(iii), we can see that Chen and Hsieh’s definition should be improved, such that the generalized fuzzy

number can be a generalization of fuzzy numbers.

3 On Generalized Fuzzy Numbers
In this section, we first redefine a generalized fuzzy number, then will discuss the set of generalized fuzzy numbers by
in three cases, i.e. the set of the same height h-generalized fuzzy numbers, the set of all different heights generalized
fuzzy numbers, and a classification of the set of generalized fuzzy numbers.

3.1 Definitions
Definition 3.1. A fuzzy set ã ∈ F (R) is said to be a h-generalized fuzzy number if it satisfies the following conditions:

(i) ã is h-normal, i.e. there exists x0 ∈ R, such that µã(x0) = h = sup{µã(x) : x ∈ R}, where h is said to be the
height of ã;

(ii) µã(x) is upper semi-continuous, i.e. µ−1
ã [λ, h] is closed for all λ ∈ [0, h];

(iii) ã is fuzzy convex, i.e. µã(λx+ (1− λ)y) ≥ min{µã(x), µã(y)} for all x, y ∈ R, λ ∈ [0, 1];
(iv) the support of ã is bounded, i.e. ā0 = cl{x ∈ R : ã(x) > 0} is bounded.
The set of all h-generalized fuzzy numbers on R is written by GR̃(h). In order to make the height clear, sometimes

a h-generalized fuzzy number ã is also de noted by ãh.
Let GR̃ = ∪

h∈[0,1]
GR̃(h). All elements in GR̃ are called generalized fuzzy numbers.

If the support set of a generalized fuzzy number is included in R+, then ã is called a non-negative generalized fuzzy
number. All non-negative generalized fuzzy numbers are de noted by GR̃+.
Remark 3.2. It is easy to see that GR̃(1) = R̃, hence the set of generalized fuzzy numbers is an extension of the set
of fuzzy numbers.
Remark 3.3. Just like fuzzy numbers’, the generalized fuzzy number also holds representation theorems, it only need to
use [0, h] instead of [0, 1], for example, ã can be represented by {āλ = [a−λ , a

+
λ ] : λ ∈ [0, h]}. For simplicity, here omitted.

3.2 On the Set GR̃(h)

Let ã, b̃ ∈ GR̃(h), we define
ã ≤ b̃⇔ āλ ≤ b̄λ, for all λ ∈ [0, h]
(ã ∗ b̃)λ = āλ ∗ b̄λ, for all λ ∈ [0, h], ∗ ∈ {+, ·}
d∞(ã, b̃) = sup{d(āλ, b̄λ) : λ ∈ [0, h]}
Then we have the following isomorphism theorem.

Theorem 3.4 (Isomorphism theorem I). Let ϕ : GR̃(h) → R̃, ãh → ã, where

µã(x) =

{
µãh(x), µãh(x) < h

1, µãh(x) = h

Then ϕ is one-to-one mapping, and (GR̃(h), ∗,≤, d∞) ∼= (R̃, ∗,≤, d∞) (“∼=” means “isomorphism”).
Remark 3.5. From this theorem, we can see that the set GR̃(h) is very clear.
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3.3 On the Set GR̃

At first, we comsider generalized fuzzy numbers as a fuzzy sets, and then give a direct discussion.
Let ãh, b̃k ∈ GR̃, we define
(i) ãh ≤ b̃k ⇔ āhλ ≤ b̄kλ, for all λ ∈ [0, 1],

where it is supposed that the empty set is less than any nonempty sets, i.e. ϕ ≤ A ⊂ R.
(ii)

(ãh∗̃b̃k)(z) = sup
x∗y=z

(ãh(x) ∧ b̃k(y)), ∗ ∈ {+, ·}
(8)

(note: this is based on the extension principle [9])
(iii) d̂∞(ãh, b̃k) = sup

λ∈[0,1]

d(āhλ, b̄
k
λ)

(iv) d∞(ãh, b̃k) = |h− k| ∨ sup
λ∈[0,1]

d(āhλ, b̄
k
λ)

, where it is supposed that d(ϕ,A) = 0, for any A ⊂ R.
Then we have the following conclusion.

Theorem 3.6.
(i) (GR̃,≤) is a partial ordering set;
(ii)

(ãh∗̃b̃k)λ =

{
āhλ ∗ b̄kλ, λ ∈ [0, h ∧ k]
ϕ, λ ∈ (h ∧ k, 1] (9)

(iii) (GR̃, d̂∞) is a quasi-metric space;
(iv) (GR̃, d∞) is a metric space;

Proof. (i) is clear. To prove (ii), it is suffices to prove the case “+”.
(1) For the case λ ∈ (h ∧ k, 1], it is clear that (ãh+̃b̃k)λ = ϕ.
(2) For the case λ ∈ (0, h ∧ k], take z ∈ (ãh+̃b̃k)λ, that is, ∨

x+y=z
(ãh(x) ∧ b̃k(y)) ≥ λ.

Take εn ↓ 0, and λ− εn > 0, then there exist {xn} , {yn} ⊂ R, xn + yn = z, such that

ãh(xn) ∧ b̃k(yn) ≥ λ− εn

Hence, xn ∈ āhλ−εn
, yn ∈ b̄kλ−εn

. Since λ-cutting sets are closed intervals, there are sub-sequences
{
xnj

}
⊂ {xn} and

{ynj} ⊂ {yn} , xnj → x0, ynj → y0. By the upper semi-continuity of membership functions, we know

ãh(x0) ∧ b̃k(y0) ≥ λ

Further, x0 ∈ āhλ, y0 ∈ b̄hλ, x0 + y0 = z, that is z ∈ āhλ + b̄kλ.
On the contrary, for z ∈ āhλ + b̄kλ, then there exist x0 ∈ āhλ and y0 ∈ b̄hλ, such that x0 + y0 = z, then

(ãh + b̃k)(z) = ∨
x+y=z

(ãh(x) ∧ b̃k(y)) ≥ ãh(x0) ∧ b̃k(y0) ≥ λ

That is z ∈ (ãh+̃b̃k)λ, then (ãh+̃b̃k)λ = āhλ + b̄kλ.

(3) For the case λ = 0, take λn ↓ 0, based on the right continuity of cutting functions a−(+)
λ at λ = 0, we have

(ãh+̃bk)0 = cl( ∪
λ>0

(ãh+̃b̃k)λ) = cl( lim
λn→0+

(ãh+̃b̃k)λn
)

= cl( lim
λn→0+

āhλn
+ lim

λn→0+
b̄kλn

) = cl(ā0 + b̄0) = ā0 + b̄0

Consequently, from (1)–(3), (ii) is proved.
(iii), (iv) is also clear.

Remark 3.7. The above arithmetic operations are not the same as Chen and Hsieh’s (Remark 2.5).
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Example 3.8. Let ã = (0, 1, 2; 1), b̃ = (0, 1, 2; 0.5). Then by Chen and Hsieh’s we have
ã+ b̃ = (0, 2, 4; 0.5),

ã · b̃ = (0, 1, 4; 0.5)

But by equation (8), we have

ã+̃b̃ = (0, 1.5, 2, 5, 4; 0.5)

(ã̃·b̃)(x) =


√

x
2 , x ∈ [0, 0.5)

0.5, x ∈ [0.5, 1.5]
3−

√
1+2x
2 , x ∈ (1.5, 4]

0, x /∈ [0, 4]

Obviously, ã̃·b̃ is not a trapezoidal generalized fuzzy number.

Remark 3.9. Next counter-example shows that d̂∞ is quasi-metric, but not a metric on GR̃.

Example 3.10. Let ã(x) =
{
0.5, x ∈ [1, 2]

0, x /∈ [1, 2]
, b̃(x) =

{
0.3, x ∈ [1, 2]

0, x /∈ [1, 2]
. Then ã ̸= b̃, but d̂∞(ã, b̃) = 0.

Corollary 3.11. (GR̃+, +̃, ·̃ ) is a commutative semi-ring.

Secondly, another way to discuss the generalized fuzzy number is to build the relationship between the generalized
fuzzy number and the fuzzy number by normalizing a generalized fuzzy number.

For ãh ∈ GR̃, we can define a fuzzy number Ã ∈ R̃ by Ã(x) = ãh(x)
h , and Ã is called the normalization of ãh. Then

we get a mapping:
ψ : GR̃→ R̃; ãh → ãh

h
= Ã

Remark 3.12. The next example shows that ψ is a full mapping, but not a one-to-one mapping.

Example 3.13. Let 1̃0.5(x) =

{
0.5, x = 1

0, x ̸= 1
, 1̃0.8(x) =

{
0.8, x = 1

0, x ̸= 1
. Then 1̃0.5 ̸= 1̃0.8, but ψ(1̃0.5) = ψ(1̃0.8) = 1̃.

We have the λ-cutting set of Ã as follow:

Ãλ = {x ∈ R : Ã(x) ≥ λ} = {x ∈ R :
ãh(x)

h
≥ λ} = {x ∈ R : ã(x) ≥ hλ} = āhhλ, where

āhhλ is called a generalized λ-cutting set of ãh, for λ ∈ [0, 1].

Theorem 3.14 (Generalized decomposition theorem). Let ã ∈ GR̃(h). Then
ã = ∪

λ∈[0,1]
((hλ) · āhλ), µã(x) = ∨

λ∈[0,1]
((hλ) ∧ χāhλ(x))

Where χ
A

is the characteristic function of set A.
Proof. Since

χāhλ(x) =

{
1, ã(x) ≥ hλ

0, ã(x) < hλ
, λ ∈ [0, 1]

then
∪

λ∈[0,1]
((hλ)āhλ) = ∨

λ∈[0,1]
((hλ)āhλ)(x)

= ∨
λ∈[0,1]

((hλ) ∧ χāhλ(x))

= ∨
hλ∈[0,h]

((hλ) ∧ χāhλ(x))

= ( ∨
0≤hλ≤ã(x)

((hλ) ∧ χāhλ(x))) ∨ ( ∨
ã(x)<hλ≤h

((hλ) ∧ χāhλ(x)))

= ∨
0≤hλ≤ã(x)

(hλ)

= ã(x)
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Theorem 3.15 (Generalized representation theorem I). Let ã ∈ GR̃(h). Then
(i) āhλ ∈ I(R), for all λ ∈ [0, 1];
(ii) āhλ2 ⊆ āhλ1 , for 0 ≤ λ1 ≤ λ2 ≤ 1;
(iii)

∞
∩

n=1
āhλn = āhλ, where λn, λ ∈ 0, 1], n ≥ 1, λn ↑ λ;

Conversely, since {ā(hλ) : λ ∈ [0, 1]} ⊂ I(R), satisfies conditions(i)-(iii), there exists ã ∈ GR̃, such that āhλ = ā(hλ),
for λ ∈ (0, 1], ā0 ⊆ ā(0).

Theorem 3.16 (Generalized representation theorem II). Let ã ∈ GR̃(h),
a−(hλ) = a−hλ , a+(hλ) = a+hλ, for λ ∈ [0, 1]. Then
(i) a−(hλ) is non-decreasing and left continuous on (0, 1];
(ii) a+(hλ) is non-increasing and left continuous on (0, 1];
(iii) a−(h) ≤ a+(h);
(iv) a−(hλ), a+(hλ) is right continuous at λ = 0.
Conversely, for the functions satisfy conditions (i)–(iv), there exists only one ã ∈ GR̃(h), such that āhλ =

[a−(hλ), a+(hλ)], λ ∈ [0, 1].

Corollary 3.17. Let ãh, b̃k ∈ GR̃. Then
ãh = b̃k ⇔ āhhλ = b̄kkλ, h = k, for all λ ∈ [0, 1]

Corollary 3.18. Let ãh, b̃k ∈ GR̃, and define
ãh ≺ b̃k ⇔ āhhλ ≤ b̄kkλ, for all λ ∈ [0, 1],

ãh ≤h b̃
k ⇔ āhhλ ≤ b̄kkλ, h ≤ k, for all λ ∈ [0, 1]

Then
(i) (GR̃,≺) is a quasi ordering set,
(ii) (GR̃,≤h) is a partial ordering set.

Remark 3.19. The ordering “≺” is not anti-symmetric, i.e. ãh ≺ b̃k, b̃k ≺ ãh does not imply ãh = b̃k.

Example 3.20. Let

ã0.6(x) =

{
0.6, x ∈ [0, 1]

0, x /∈ [0, 1]
, b̃0.8(x) =

{
0.8, x ∈ [0, 1]

0, x /∈ [0, 1]

Then ã0.6 ̸= b̃0.8, but ā0.60.6λ = [0, 1] = b̄0.80.8λ, for all λ ∈ [0, 1].

Remark 3.21. “≤h” and “≤” is different.

Example 3.22. Let ã = (0, 1, 2; 1), b̃ = (0, 0.5, 1.5, 2; 0.5). Then b̃ ≤ ã, but b̃ ≤h ã does not hold.

Theorem 3.23.
(i) If we define

ãh ≈ b̃k ⇔ ãh ≺ b̃k, b̃k ≺ ãh, forã
h, b̃k ∈ GR̃

then “≈” is an equivalence relation on GR̃.
(ii) (GR̃/≈,≺) is a partial ordering set, where GR̃/ ≈= {¯̃a = {r̃ : r̃ ≈ ã} : ã ∈ GR̃} is the quotient set.

Theorem 3.24. Let ãh, b̃k ∈ GR̃, ∗ ∈ {+, ·}, it is defined as

ãh
⌢∗ b̃k = ∪

λ∈[0,1]
(((h ∧ k)λ) · (āhhλ ∗ b̄kkλ)) (10)

Then
(i)

(ãh
⌢∗ b̃k)(h∧k)λ = āhhλ ∗ b̄kkλ, λ ∈ [0, 1], (11)

(ii) (GR̃+,
⌢

+ ,
⌢· ) is a commutative semi-ring.

Remark 3.25. So far, we have defined three kinds of arithmetic operations on generalized trapezoidal fuzzy numbers(i.e.
equation (1); (2); (8); (9)). It can be easily seen that:

(i) equation (1) and equation (2) are different from equation (8);
(ii) ã1 + ã2 (equation (1)) is the same as ã1

⌢

+ ã2 (equation (10)), but ã1 · ã2 and ã1 ⌢· ã2 are different.
(ii) equations (8) and (10) are different.
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Example 3.26. Let ã, b̃ be as in Example 3.1, i.e. ã = (0, 1, 2; 1), b̃ = (0, 1, 2; 0.5). Then

ã
⌢

+ b̃ = (0, 2, 4; 0.5)

(ã
⌢· b̃)(x) =


0.5

√
x, x ∈ [0, 1)

0.5, x = 1

0.5(2−
√
x), x ∈ (1, 4]

0, x /∈ [0, 4]

Theorem 3.27. Let ãh, b̃k ∈ GR̃, it is defined as

D̂∞(ãh, b̃k) = sup
λ∈[0,1]

d(āhhλ, b̄
k
kλ)

D∞(ãh, b̃k) = |h− k| ∨ D̂∞(ãh, b̃k)

Then
(i) (GR̃, D̂∞) is a quasi-metric space,
(ii) (GR̃,D∞) is metric space.

Remark 3.28. Both Functions d̂∞ and D̂∞ (resp. d∞ and D∞) are different.

Example 3.29. Let ã = (0, 4, 8; 1), b̃ = (0, 4, 8; 0.5). Then

d̂∞(ã, b̃) = 2, D̂∞(ã, b̃) = 0

d∞(ã, b̃) = 2, D∞(ã, b̃) = 0.5

Theorem 3.30. (GR̃,D∞) (resp. (GR̃, D̂∞)) is a complete and non-separable metric space (resp. quasi-metric space).

Proof. It is suffices to prove the case (GR̃,D∞).
Let us take a Cauchy sequence

{
ãhn
n

}
⊂ GR̃. For every λ ∈ [0, 1], write ān(λ) = āhn

hnλ
, n ≥ 1. By definition of D∞,

we can see that {hn} and {ān(λ)} are all Cauchy sequences. Since (R, ||) and (I(R), d) are complete, then hn → h and
ān(λ) → ā(λ) uniformly with λ ∈ [0, 1].

Next, let us prove {ā(hλ) : λ ∈ [0, 1]} can determine a generalized fuzzy number.
(i) It is obvious that {ā(hλ) : λ ∈ [0, 1]} is a family of interval number,
(ii) For λ1 ≤ λ2, n ≥ 1, we have ān(λ2) ⊆ ān(λ1), then

ā(hλ2) = lim
n→∞

ān(λ2) ⊆ lim
n→∞

ān(λ1) = ā(hλ1)

(iii) For a fixed λ ∈ (0, 1], take λn ↑ λ, then
∞
∩

n=1
ā(λn) = [ lim

n→∞
a−(λn), lim

n→∞
a+(λn)]

= [ lim
n→∞

lim
k→∞

a−k (λn), lim
n→∞

lim
k→∞

a+k (λn)]

= [ lim
k→∞

lim
n→∞

a−k (λn), lim
k→∞

lim
n→∞

a+k (λn)]

(as āk(λ) → ā(λ) uniformly with λ ∈ [0, 1], the above two repeated limits can exchange order)

= [ lim
k→∞

a−k (λ), lim
k→∞

a+k (λ)]

(as a−k (λ), a
+
k (λ) is left continuous)

= [a−(hλ), a+(hλ)]

= ā(hλ)

Hence, by generalized representation theorems, there is a ãh ∈ GR̃, such that āhhλ = ā(hλ), for λ ∈ (0, 1], meanwhile
āh0 = cl( ∪

λ∈(0,1]
āhhλ) ⊆ ā(0).
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Since
cl( ∪

λ∈(0,1]
ān(λ)) = ān(0), āk(λ) → ā(λ) uniformly with λ ∈ [0, 1], then we have āh0 = ā(0).

Consequently D∞(ãhn
n , ãh) → 0, and (GR̃,D∞) is complete.

We know that (GR̃(1), D∞) is non-separable [7] as a complete subspace, this leads to (GR̃,D∞) which is also
non-separable.

For the case (GR̃, D̂∞) is similar,
the proof is end.

Theorem 3.31. Let ãh, b̃k ∈ GR̃+, it is defined

S(ãh, b̃k) =
1

1 +D∞(ãh, b̃k)

Then S is a similarity measure on GR̃+, i.e. there holds
(i) 0 ≤ S(ãh, b̃k) ≤ 1, S(ãh, b̃k) = 1 ⇔ ãh = b̃k

(ii) S(ãh, b̃k) = S(b̃k, ãh)
(iii) ãh ≤h b̃

k ≤h c̃
l ⇒ S(ãh, b̃k) ≥ S(ãh, c̃l)

Remark 3.32. The above theorem is still holding for metric d∞.

3.4 On the Set GR̃/ ≈

From Theorem 3.23, we know that GR̃/ ≈= {¯̃a = {r̃ : r̃ ≈ ã} : ã ∈ GR̃},for ¯̃a, ¯̃b ∈ GR̃/ ≈. Let’s define
¯̃a ≤h

¯̃
b⇔ ã ≤h b̃

¯̃a
⌢∗ ¯̃
b = ã

⌢∗ b̃, ∗ ∈ {+, ·}

D∞(¯̃a,
¯̃
b) = D∞(ã, b̃)

Then we have the following theorems:
Theorem 3.33 (Isomorphism theorem II).

(i) (GR̃/ ≈;≤h) ∼= (R̃;≤),

(ii) (GR̃+/ ≈;
⌢∗ , D∞) ∼= (R̃+; ∗, d∞)

Where “∼=” means “ isomorphism ”.
Theorem 3.34. For a fixed ¯̃a ∈ GR̃/ ≈.Let ã

h, b̃k ∈ ¯̃a. Then
(i) ãh ≤h b̃

k ⇔ h ≤ k
(ii) D∞(ãh, b̃k) = |h− k|

4 Applications: An Introduction to Generalized Fuzzy
Number-valued Functions

So far, generalized fuzzy numbers have shown repeatedly the applications in risk analysis, see e.g. [3, 4, 5, 14, 21, 29],
transportation problems see [9, 16], decision making [30], pattern recognition [7] and many other fields. Meanwhile, it
is well-known that fuzzy-valued functions are also useful tool in optimization, decision makings, economic analysis and
so on. Many authors, see e.g. [6, 7, 9, 21, 29, 30, 34] have done much work in the field of fuzzy-valued functions, so we
should build up the theory on generalized fuzzy number-valued functions.
Definition 4.1. A mapping F̃ : [a, b] → GR̃ is said a generalized fuzzy number-valued function. F̃ is said to be left
continuous at t0 ∈ (a, b] (resp. right continuous at t0 ∈ [a, b)), if for every ε > 0 there exists δ(ε, t0) > 0 such that
D∞(F̃ (t), F̃ (t0)) < ε for all t ∈ [a, b] with 0 < t0− t < δ (resp. 0 < t− t0 < δ). F̃ is said to be continuous at t0 ∈ (a, b),
if it is both left and right continuous at t0 ∈ (a, b). F̃ is said to be continuous on [a, b], if it is continuous at every
t ∈ (a, b), right continuous at t = a and left continuous at t = b.
Theorem 4.2. Let F̃ : [a, b] → GR̃ be a generalized fuzzy number-valued function, h(t) = hF̃ (t) is the height of F̃ (t) and
Fh(t)λ(t) = [f−h(t)λ(t), f

+
h(t)λ(t)] for λ ∈ [0, 1]. Then it is continuous if and only if h(t) and f

−(+)
h(t)λ (t) are all continuous

for every λ ∈ [0, 1].
This is the beginning of analysis theory of generalized fuzzy number-valued functions.
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5 Conclusions
(i) First, many conclusions of trapezoidal generalized fuzzy numbers can be extended to the case of generalized fuzzy
numbers.

Example 5.1. Extensions of equation (3)–(7).
Let ãh ∈ GR̃, we define the ranking function as follow:

K(ã) = α

h∫
0

a−λ dλ+ (1− α)

h∫
0

a+λ dλ, α ∈ [0, 1]

Where “
∫

” is the Riemann integral. since a−λ , a
+
λ are monotone, K(ã) is well defined and it is an extension of equation

(3).
Next, in order to extend equations (4) and (5), it needs the following lemma.

Lemma 5.2. Let ã ∈ GR̃. Then it’s membership function can be represented by

ã(x) =


l(x), a ≤ x < b

h, b ≤ x ≤ c

r(x), c < x ≤ d

0, x /∈ [a, d]

,

where a ≤ b ≤ c ≤ d, a, b, c, d ∈ R, h ∈ [0, 1], l : [a, b) → [0, h) is non-decreasing and right continuous, r : (c, d] → (0, h]
is non-increasing left continuous.

By the lemma, we suppose ãi ∈ GR̃, i = 1, 2, and

ãi(x) =


li(x), ai ≤ x < bi

hi, bi ≤ x ≤ ci

ri(x), ci < x ≤ di

0, x /∈ [ai, di]

We define

d(ã1, ã2) =

√
(x∗ã1

− x∗ã2
)2 + (y∗ã1

− y∗ã2
)2

√
1.25

S(ã1, ã2) = 1− 1

2
× (

|a1 − a2|+ |b1 − b2|+ |c1 − c2|+ |d1 − d2|
4

+ d(ã1, ã2))

where x∗ãi
, y∗ãi

determine the COG of ãi, i = 1, 2, that is,

xi∗ =

bi∫
ai

xli(x)dx+
ci∫
bi

xhidx+
di∫
ci

xri(x)dx

bi∫
ai

li(x)dx+
ci∫
bi

hidx+
di∫
ci

ri(x)dx

,

yi∗ =

hi∫
0

λ(l−1
i (λ)− r−1

i (λ))dλ

hi∫
0

(l−1
i (λ)− r−1

i (λ))dλ

l−1
i (λ) = inf{x : li(x) = λ}, r−1

i (λ) = sup{x : ri(x) = λ}.

Then equations (4) and (5) are extended.
(ii) since now, the general theory on generalized fuzzy numbers has been established. These including orders,

arithmetic operations and metrics, and some properties are obtained. It is not only the deeper study of Chen and
Hsieh’s [2], but also a good generalization of the corresponding theory of fuzzy numbers.
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(iii) There are some other definitions of different kinds of generalized fuzzy numbers, such as Wang’s generalized
discrete fuzzy number [27, 28]. It is easy to see that Wang’s can not be included in ours. It is necessary to point out
that an interesting work about Huang and Wu’s general fuzzy sets which had no the assumption of fuzzy convexity or
compact support, is also the generalization of fuzzy numbers not being included in ours, for the details, see [15].

With the basic theory of generalized fuzzy numbers shown in the paper, a new branch of fuzzy analysis with
generalized fuzzy number-valued functions can be expected. As an application, we have put forward the basic issues of
functions with values in generalized fuzzy numbers, its differential and integral can be investigated subsequently.
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