تعداد نشریات | 27 |
تعداد شمارهها | 558 |
تعداد مقالات | 5,770 |
تعداد مشاهده مقاله | 8,027,729 |
تعداد دریافت فایل اصل مقاله | 5,395,425 |
Innovative Hybrid Backward Input Estimation and Data Fusion for High Maneuvering Target Tracking | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 5، دوره 2، شماره 4، دی 2019، صفحه 305-318 اصل مقاله (627.03 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2019.26172.1066 | ||
نویسندگان | ||
Ali Karsaz ![]() | ||
1Khorasan Istitute of Higher Education | ||
2Khorasan Institute of Higher Education, Department of Electrical Engineering, Mashhad, Iran. | ||
چکیده | ||
Abstract: A hybrid unknown input estimation based on a new two-sample backward model and data fusion for high maneuvering target tracking is proposed. This new approach is based on the consideration of more than one state and input components from the current single observation. These extracted state and input components would be augmented in a single vector, and the final estimation for unknown target acceleration will be determined. Using a combination of the new backward modeling and traditional modified input estimation (MIE) technique, more information will be extracted. This new hybrid scheme which using more input information can better estimate the target maneuvering structure. Despite the traditional methods, the proposed algorithm introduces two different strategies to state the input estimation including online and delayed estimation scenarios. Also, this paper suggests several different data fusion methods through these strategies. The results are compared with a typical MIE method to evaluate the performance of the proposed hybrid scheme especially for problems in high maneuvering target tracking. The results show that the backward algorithm makes advantages such as reduction of the transient state error and more stability for the estimation by an appropriate combination of the MIE estimator. | ||
کلیدواژهها | ||
Input estimation؛ data fusion methods؛ high maneuvering target tracking؛ model predictive control | ||
مراجع | ||
[1] Pachter, M.: ‘Kalman filtering when the large bandwidth control is not known’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (1), pp. 542-551. [2] Lee H., Tahk, M.J.: ‘Generalized input-estimation technique for tracking maneuvering targets’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, 4, pp.1388-1402. [3] Chan, Y.T., Hu, A.G.C., Plant, J.B.: ‘A Kalman filter based tracking scheme with input estimation’, IEEE Trans. Aerosp. Electron. Syst., 1979, 15, (2), pp. 237–244. [4] Khaloozadeh, H., Karsaz, A.: ‘Modified input estimation technique for tracking manoeuvring Targets’, IET Radar Sonar Navig., 2009, 3, (1), pp. 30–41. [5] Sheng, H., Zhao, W., Wang, j.: ‘Interacting multiple model tracking algorithm fusing input estimation and best linear unbiased estimation filter’, IET Radar Sonar Navig., 2017, 11, (1), pp. 70-77. [6] Wang, T.C., Varshney, P.K.: ‘A tracking algorithm for maneuvering targets’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (3), pp. 910–924. [7] Whang, H.I., Lee, J.G., Sung, T.K.: ‘Modified input estimation technique using pseudo residuals’, IEEE Trans. Aerosp. Electron. Syst., 1994, 30, (1), pp. 220–228. [8] Cloutier, J.R., Lin, C.F., Yang, C.: ‘Enhanced variable dimension filter for maneuvering target tracking’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (3), pp. 786–797. [9] Liang, Y., Zhou, D., Zhang, L., Pan, Q.: ‘Adaptive filtering for stochastic systems with generalized disturbance inputs’, IEEE Signal Process., Letters, 2008 15, pp. 645-648. [10] Karsaz, A., Khaloozadeh, H.: ’An optimal two-stage algorithm for highly maneuvering targets tracking’, Signal Process., 2009, 89, (4), pp. 532–547. [11] Bahari, M.H., Karsaz, A., Pariz, N.: ‘High maneuvering target tracking using a novel hybrid Kalman filter-fuzzy logic architecture’, Int. J. Innovative Computing, Information and Cont., 2011, 7. (5), pp. 501-511. [12] Malekian, H., Khaloozadeh, H.: ‘Extended input estimation method for tracking non-linear manoeuvring targets with multiplicative noises’ , IET Radar Sonar Navig., 2016, 10, (9), pp. 1683-1690. [13] Hu, X., Hu, Y.H., Xu, B.: ‘Generalised Kalman filter tracking with multiplicative measurement noise in a wireless sensor network’, IET Signal Process., 2014, 8, (5), pp. 467–474. [14] Chung, Y.N., Juang, D.J., Hu, K.C., Li, M.L., Chuang, K.C.: ‘The dual-Kalman filtering and neural solutions to maneuvering estimation problems’, J. Information Sci. and Eng., 2010, 26, pp. 1479-1490. [15] Lee, B.J., Park, J.B., Joo, Y.H., Jin, S.H.: ‘Intelligent Kalman filter for tracking a manoeuvring target’, IEE Proc.-Radar Sonar Navig., 2004, 151, (6), pp. 344-350. [16] Lan, H., Liang, Y., Yang, F., Wang, Z., Pan, Q.: ‘Joint estimation and identification for stochastic systems with unknown inputs’, IET Control Theory Appl., 2013, 7, (10), pp. 1377–1386. [17] Zhou, J., Liang, Y., Zhou, L., Quan, P.: ‘Joint estimation of state and bias based on generalized systematic model’. Proc. Int. Conf. on Control. China, July 2015, pp. 28-30. [18] Mohammed, D., Mokhtar, K., Abdelaziz, O., Abdelkrim, M.: ‘A new IMM algorithm using fixed coefficients filters (fast IMM)’, Int. J. Electron. Commun., 2010, 64, pp. 1123–1127. [19] Jin, B., Jiu, B., Su, T., Liu, H., Liu, G.: ‘Switched Kalman filter-interacting multiple model algorithm based on optimalautoregressive model for manoeuvring target tracking’, IET Radar Sonar Navig., 2015, 9, (2), pp. 199-209. [20] Zhu, L., Cheng, X.: ‘High manoeuvre target tracking in coordinated turns,, IET Radar Sonar Navig., 2015, 9, (8), pp. 1078–1087. [21] Lee, B.J., Park, J.B., Lee, H.J., Joo, Y.H.: ‘Fuzzy logic based IMM algorithm for tracking a manoeuvring target’, IEE Proc.- Radar Sonar Navig., 2005, 152, (1), pp. 16-22. [22] Luo, X., Jiu, B., Chen, S.: ‘ML estimation of transition probabilities for an unknown maneuvering emitter tracking’, Signal Proc., 2015, 109, pp. 248–260, 2015. [23] Foo, P.H., Ng, G.W.: ‘Combining the interacting multiple model method with particle filters for manoeuvring target tracking’, IET Radar Sonar Navig., 2011, 5, (3), pp. 234–255. [24] Kim, T.H., Song, T.L., Kim, H.J.: ‘Information filters with reduced data storage for out-of-sequence measurements update’, IET Radar Sonar Navig., 2016, 10, (6), pp. 1038– 1045. [25] Abdullah, R.S.A.R., Salah, A.A., Ismail, A., et al.: ‘Experimental investigation on target detection and tracking in passive radar using long-term evolution signal’, IET Radar Sonar Navig., 2016, 10, (3), pp. 577–585. [26] Mušicki, D., Song, T.L., Lee, H.H., et al.: ‘Track-to-track fusion with target existence’, IET Radar Sonar Navig., 2015, 9, (3), pp. 241–248. [27] Karszaz, A., Ahari, A.A.: ‘Backward input estimation algorithm for tracking maneuvering target’. Proc. Conf. Electrical Engineering, Shiraz, Iran, May 2016, pp. 745-750. [28] Garcia, C.E., Prett, D.M. Morari, M.: ‘Model predictive control: theory and practice – a survery”. Auotomatic, 1989, 25, (3), pp. 335-348. [29] Zitnik, M., Zupan, B.: ‘Data fusion by matrix factorization’, IEEE Trans. On Pattern Analysis and Machine Intelligence, 2005, 37, (1), pp. 41-55. [30] Zhou, L., Liang, Y., Zhou, j., Yang, F., Pan, Q.: ‘Linear minimum mean squared estimation of measurement bias driven by structured unknown inputs’, IET Radar Sonar Navig., 2014, 8, (8), pp. 977-986. [31] George, D.E., Unnikrishnan, A.: ‘On the divergence of information filter for multi sensors fusion’, J. Information Fusion, 2016, 27, pp. 76-84. [32] Ljung, L.: ‘System identification: theory for the user”, (Prentice Hall, Englewood Cliffs, Nj, 1999). [33] Anderson, S.R., Dean, P., Kadirkamanathan, V., Kaneko,C.R.S., Porrill, J.: ‘System identification from multiple short- time-duration signals’, IEEE Trans. Biom. Eng., 2007, 54, (12),pp. 2205-2213. [34] Song, E., Zhu, Y., Zhou, J., Zhisheng, Y.: ‘Optimal Kalman filtering fusion with cross-correlated sensor noises’, Automatica, 2007, 43, pp. 1450–1456. [35] Ding, J., Xiao, J., Zhang, Y.: ‘Distributed input and state estimation for non-linear discrete-time systems with direct feedthrough’, IET Control Theory Appl., 2014, 8, (15), pp. 1543–15 | ||
آمار تعداد مشاهده مقاله: 380 تعداد دریافت فایل اصل مقاله: 116 |