تعداد نشریات | 27 |
تعداد شمارهها | 612 |
تعداد مقالات | 6,232 |
تعداد مشاهده مقاله | 9,356,180 |
تعداد دریافت فایل اصل مقاله | 6,107,332 |
INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 2، شماره 2، دی 2005، صفحه 1-13 اصل مقاله (195.17 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2005.477 | ||
نویسندگان | ||
YONG SOO KIM* 1؛ Z. ZENN BIEN2 | ||
1DIVISION OF COMPUTER ENGINEERING, DAEJEON UNIVERSITY, DAEJEON, 300-716, KOREA | ||
2DEPARTMENT OF ELECRICAL ENGINEERING AND COMPUTER SCIENCE, KAIST, DAEJEON, 305-701, KOREA | ||
چکیده | ||
The proposed IAFC neural networks have both stability and plasticity because they use a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network. The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzy leaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzy membership values. The supervised IAFC neural networks are the supervised neural networks which use the fuzzified versions of Learning Vector Quantization (LVQ). In this paper, several important adaptive learning algorithms are compared from the viewpoint of structure and learning rule. The performances of several adaptive learning algorithms are compared using Iris data set. | ||
کلیدواژهها | ||
Neural Networks؛ Fuzzy logic؛ Fuzzy neural networks؛ Learning rule؛ Fuzzification | ||
مراجع | ||
[1] J. C. Bezdek, E. C. Tsao and N. R. Pal, Fuzzy Kohonen clustering networks, Proceeding of the First IEEE Conference on Fuzzy System, (1992) 1035-1043. [2] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, (1981). [3] G. A. Carpenter and S. Grossberg, A massively parallel architecture for a self-organization neural pattern recognition machine, Computer vision, Graphics, and Image processing, 37 (1987) 54-115. [4] G. A. Capenter, S. Grossberg and D. B. Rosen, Fuzzy ART : fast stable learning and categorization of analog pattern by an adaptive resonance systems, Neural Networks, 4 (1992) 759-772. [5] F-L Chung and T. Lee, A fuzzy learning model for membership function estimation and pattern classification, Proceedings of the third IEEE conference on Fuzzy systems, 1 (1994) 426-431. [6] F. L. Chung and T. Lee, Fuzzy competitive learning, Neural Networks, 7 (1992) 539-551. [7] T. L. Huntsberger and P. Ajjimarangsee, Parallel self-oraganizing feature maps for unsupervised pattern recognition, Int. J. General System, 16 (1990) 357-372. [8] Y. S. Kim and S. Mitra, An adaptive integrated fuzzy clustering model for pattern recognition, Fuzzy Sets and Systems, 65 (1994) 297-310. [9] Y. S. Kim, An unsupervised neural network using a fuzzy learning rule, Proceedings of 1999 IEEE International Fuzzy Systems, I (1999) 349-353. [10] T. Kohonen, Self-organization and associative memory, 3rd ed., Springer-Verlag, Berlin, (1984) [11] T. Kohonen, The Self-organizing map, Proceedings of the IEEE, 78 (1990) 1464-1480. [12] C-T Lin and C. S. G Lee, Neural fuzzy systems-a neuro-fuzzy synergism to intelligent systems, Prentice-Hall, New Jergy, (1996). [13] B. Moore, ART-1 and pattern clustering, Proceedings of the 1988 Connectionist Models Summer School, (1981) 174-185. [14] S. K. Pal and S. Mitra, Fuzzy dynamic clustering algorithm, Pattern Recognition Letters, 11 (1990) 525-535. [15] T. J. Ross, Fuzzy logic with engineering applications, McGraw-Hill, New York, (1997). [16] P. K. Simpson, Fuzzy min-max neural network-part 2 : clustering, IEEE Trans. on Fuzzy Systems, 1 (1993). [17] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-352. | ||
آمار تعداد مشاهده مقاله: 2,341 تعداد دریافت فایل اصل مقاله: 1,549 |