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Abstract

To address the hesitancy, inconsistency and uncertainty of decision makers cognitions, linguistic interval hesitant fuzzy
sets (LIHFSs) are efficient tools. This paper focuses on studying the application of LIHFSs. To do this, two correlation
coefficients of LIHFSs are defined, which needn’t consider the length of elements in LIHFSs or the arrangement of their
possible interval values. To address the situation where the weights of elements in a set are different and correlative, two
linguistic interval hesitant fuzzy Shapley weighted correlation coefficients are defined. Considering the situation where
the weight information of features/attributes is partly known, programming models to determine the optimal fuzzy
measures on them are constructed, respectively. After that, an approach to pattern recognition and multi-attribute
decision making with linguistic interval hesitant fuzzy information is developed, respectively. Meanwhile, illustrative
examples about medical diagnosis and selecting constructors for tunnel bidding are selected to verify the application of
new approaches, and comparison with a previous method is offered.

Keywords: Decision making, pattern recognition, linguistic interval hesitant fuzzy set, correlation coefficient, distance
measure.

1 Introduction

Decision making is one of the most common and important daily activities in human life. In the past half century, many
researchers devoted themselves to studying the theory and application of decision making [6, 16, 17, 22, 38, 39, 60].
Bidding decision is an indispensable activity for bidder that plays an increasingly important role in the daily economic
affairs. At present, there are five main methods for solving bidding problems under multi-risk factors, including the
analytic hierarchy process (AHP) method, artificial neural network (ANN) method, fuzzy evaluation (FE) method,
expert system (ES) method, and case-based reasoning (CBR) method. With the rapid development of human social-
economic activities, it becomes more and more difficult to require decision makers (DMs) to provide exact attribute
values. To address this issue, Zadeh’s fuzzy set theory is a good tool [57]. With the development of fuzzy decision-making
theory, many types of fuzzy sets are presented, which can be classified into two types: One type is the quantitative fuzzy
sets, such as [1, 42, 57]; the other type is the qualitative fuzzy sets, including [12, 25, 30, 39, 47, 58]. The emergence of
fuzzy variables provides a new way to solve engineering bidding.

Many researchers have noted that quantitative variables cannot be used in some complex decision-making problems.
To deal with this problem, linguistic variables [58] are good choices that own many good characteristics. However, the use
of linguistic variables has drawbacks in modeling and calculating information. Considering this issue, several computing
with word (CW) models have been proposed to broaden the application of decision making with linguistic variables in
the literature [34, 47, 49, 50, 57]. However, linguistic variables can only handle the exact qualitative information, which
restricts the application. Xu [51] first noted this problem and introduced uncertain linguistic variables by extending the
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discrete linguistic term set to the continuous linguistic term set. Taking the advantages of Atanassov’s intuitionistic
fuzzy sets (IFSs) [1], interval-valued intuitionistic fuzzy sets (IVIFSs) [2] and linguistic variables [58], Wang and Li [43]
gave intuitionistic linguistic sets (ILSs), Liu and Jin [21] proposed intuitionistic uncertain linguistic sets (IULSs), and
Liu [20] introduced interval-valued intuitionistic uncertain linguistic sets (IVIULSs). As Torra [42] noted when a DM
makes a judgment, several possible values may exist. Thus, Torra [42] introduced the concept of hesitant fuzzy sets
(HFSs), which apply several possible values in [0, 1] to denote a judgement. After the original work of Torra [42], Chen
et al. [6] further introduced interval-valued hesitant fuzzy sets (IVHFSs) that use several intervals in [0, 1] to express a
judgment. As the above mentioned limitation, HFSs and IVHFSs can only denote the quantitative opinions of the DMs.
Thus, Rodriguez et al. [39] proposed hesitant fuzzy linguistic term sets (HFLTSs), which use several linguistic variables
to denote the qualitative hesitancy of DMs’ recognitions. Following the original work of Rodriguez et al. [39], several
methods for decision making with HFLTSs are developed [15, 16, 17, 38]. To express the quantitative and qualitative
hesitancy of DMs, several types of hybrid hesitant fuzzy sets are proposed in the literature [14, 25, 27, 29, 31, 44].

Correlation coefficient [7, 10] is one of the most important indices that has been received considerable attention in
many fields, such as digital image processing [46], clustering analysis [3, 5, 53], and decision making [18, 53]. To address
fuzzy decision-making information, Dumitrescu [9] extended correlation to fuzzy situations and proposed the concept
of fuzzy correlation, Yu [55] introduced fuzzy correlation and correlation coefficient to measure the interrelation of
fuzzy sets, Chiang and Lin [7] defined fuzzy correlation coefficients by adopting the idea of conventional statistics, and
Hong [13] adopted the weakest t-norm (TW)-based fuzzy arithmetic operations to research fuzzy correlation coefficient.
Furthermore, several extended types of fuzzy correlation coefficients are proposed in the literature [4, 5, 10, 19, 24, 37,
52, 54]. Note that Xu and Xia’s hesitant fuzzy correlation coefficients and Chen et al.’s interval-valued hesitant fuzzy
correlation coefficients require the considered HFSs or IVHFSs to have the same length. In contrast to these correlation
coefficients, Meng et al. [23, 24] further presented several new correlation coefficients of HFSs and IVHFSs that neither
consider the length of (IVHFSs) HFSs nor the arrangement of the possible (interval) values.

Considering there is no research on correlation coefficient of LIHFSs, which restricts the application of LIHFSs.
Following the works of Meng at al. [23, 24], this paper studies the correlation coefficients of LIHFSs and defines
linguistic interval hesitant fuzzy correlation coefficients, which needn’t consider the length of the compared LIHFSs or
the arrangement of the possible interval values. The remainder of this paper is organized as follows:

In Section 2, several basic concepts related to IVHFSs, LIHFSs, fuzzy measures, 2-additive measures and the Shapley
function are reviewed. In Section 3, a new distance measure for LIHFSs is defined, and several correlation coefficients
of LIHFSs are proposed, including the geometric mean based correlation coefficient, the maximum based correlation
coefficient, and the Shapley weighted correlation coefficients. In Section 4, a programming model for determining
the optimal 2-additive measure on the feature set is built, and an approach to pattern recognition with LIHFSs is
developed. Meanwhile, a pattern recognition problem about medical diagnosis is selected to show the application of
the new method. In Section 5, programming models for determining the optimal 2-additive measure on the attribute
set are constructed. Then, an approach to decision making with LIHFSs is provided. Meanwhile, an example about
selecting constructors for tunnel bidding is offered to verify the application of the new method. The conclusions are
made in the last.

2 Basic concepts

To cope with the situation where several possible values exist for a judgment, Torra [42] introduced hesitant fuzzy sets
(HFSs) that use several values in [0, 1] to denote the possible membership degrees. Later, Chen et al. [6] extended
HFSs to interval-valued hesitant fuzzy sets (IVHFSs) and gave the following definition:

Definition 2.1. [6] Let X = {x1, x2, ..., xn} be a finite set. An IVHFS Ā on X is in terms of a function that when
applied to X returns to a subset of D[0, 1], denoted by Ā =

{
< xi, h̄Ā(xi) > |xi ∈ X

}
, where h̄Ā(xi) is a set of all

possible interval membership degrees of the element xi ∈ X to Ā with D[0, 1] being the set of all closed subintervals in
[0, 1]. For convenience, Chen et al. [6] called h̄Ā(xi) an interval-valued hesitant fuzzy element.

To express the hesitancy and uncertainty of DMs’ qualitative and quantitative cognitions, Meng et al. [31] introduced
the concept of linguistic interval hesitant fuzzy sets (LIHFSs) as follows:

Definition 2.2. [31] LetX = {x1, x2, ..., xn} be a finite set, and let S = {s1, s2, · · · ,
s2t+1} be the predefined linguistic term set. A LIHFS on X is a set that when applied to the linguistic terms of
S it returns to a subset of S with several intervals in [0, 1], denoted by LIH =

{(
sθ(i), h̄(sθ(i))

)
|sθ(i) ∈ S

}
, where

h̄(sθ(i)) = {r̄i1 , r̄i2 , ..., r̄im} is a set with m intervals in [0, 1] denoting the possible interval membership degrees of the
linguistic term sθ(i) to LIH.
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For example, to evaluate the quality of a mobile phone for the predefined linguistic term set S = {s1 : poor, s2:
slightly poor, s3: average, s4: slightly good, s5: good}, a DM may hesitate to give the interval [0.2, 0.3] or [0.4, 0.6]
for slightly poor, the interval [0.2, 0.5], [0.6, 0.7] or [0.8, 0.9] for slightly good, and the interval [0.3, 0.4] for good. To
deal with this situation, LIHFSs are effective tools, and the above evaluation for the quality of a mobile phone can be
expressed by LIH (quality) = (s2, [0.2, 0.3], [0.4, 0.6]), (s4, [0.2, 0.5], [0.6, 0.7], [0.8, 0.9]), (s5, [0.3, 0.4]).

For any LIHFS LIH =
{(

sθ(i), h̄(sθ(i))
)
|sθ(i) ∈ S

}
, when h̄(sθ(i)) = {[1, 1]} for each linguistic variable sθ(i), then

it degenerates to a hesitant fuzzy linguistic term set (HFLTS) [39]. Furthermore, when each interval preferred degree
in h̄(sθ(i)) reduces to a real number for every linguistic variable sθ(i), then it reduces to a linguistic hesitant fuzzy set
(LHFS) [25].

Definition 2.3. [31] Let LIH1 be a LIHFS. Then, the complement of LIH1 is denoted as:

(LIH1)
c =

s2t+1−θ(i),
∪

ri∈h(sθ(i))

[1− r+i , 1− r−i ]
∣∣sθ(i) ∈ S


(1)

In practical decision-making problems, the independence between the weights of elements in a set is usually violated.
To solve this issue, fuzzy measures [41] are efficient tools.

Definition 2.4. [41] A fuzzy measure µ on the finite set N = {1, 2, ..., n} is a set function µ: P (N) → [0, 1] satisfying
(i) µ(∅) = 0,µ(N) = 1;
(ii) If A,B ∈ P (N) and A ⊆ B, then µ(A) ≤ µ(B), where P (N) is the power set of N .

From the definition of fuzzy measures, one can find that they are defined on the power set, which cannot be used
as the weights of elements directly. To overcome the issue, researchers adopted the following Shapley function [40]:

φi(µ,N) =
∑

S⊆N\i

(n− s− 1)!s!

n!
(µ(S ∪ i)− µ(S)) ∀i ∈ N

(2)

where µ is a fuzzy measure on N = {1, 2, ..., n}, s and n denote the cardinalities of S and N , respectively.
Formula (2) shows that the Shapley value is an expect value, which globally reflects the interactions among the

weights of elements. Definition 2.4 shows that φi(µ,N) ≥ 0 for any i ∈ N and
n∑

i=1

φi(µ,N) = 1. Thus, {φi(µ,N)}i∈N

is a weight vector. When there is no interaction, the Shapley value reduces an additive weight, where φi(µ,N) = µ(i) =

ωi ≥ 0 for any i ∈ N and
n∑

i=1

ωi = 1. Because fuzzy measures are defined on the power set, 2-additive measures [11] are

good choices to reduce the complexity of solving fuzzy measures.

Definition 2.5. [11] The fuzzy measure µ on N = {1, 2, ..., n} is called a 2-additive measure, if, for any S ⊆ N with
s ≥ 2, the following is true:

µ(S) =
∑

{i,j}⊆S

µ(i, j)− (s− 2)
∑
i∈S

µ(i)

(3)

where s is the cardinality of S.

Theorem 2.6. [11] µ is a 2-additive measure on N = {1, 2, ..., n} if and only if, for all i, j ∈ N , the following
conditions hold:
(i) µ(i) ≥ 0 ∀i ∈ N ;
(ii)

∑
{i,j}⊆N

µ(i, j)− (n− 2)
∑
i∈N

µ(i) = 1;

(iii)
∑

i⊆S\j
(µ(i, j)− µ(i)) ≥ (s− 2)µ(j) ∀j ∈ S ⊆ N and s ≥ 2,

where s and n denote the cardinalities of S and N , respectively.
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With respect to the 2-additive measure µ, the Shapley function can be expressed as follows [26]:

φi(µ,N) =
3− n

2
µ(i) +

1

2

∑
j∈N\i

(µ(i, j)− µ(j))

(4)

where N = {1, 2, ..., n}.

3 Correlation coefficients of LIHFSs

Correlation coefficients are effective tools that have been applied in many fields. In this section, we research correlation
coefficients of LIHFSs, which neither consider the length of the compared LIHFSs nor the arrangement of the possible
interval membership degrees. To do this, a distance measure for LIHFSs is defined. In contrast to Meng et al.’s
Euclidean distance measure for LIHFSs [31], which cannot guarantee equal to zero if and only if LIHFSs are equal. For
example, let LIH1 = {(s1, [0.4, 0.6])} and LIH2 = {(s2, [0.2, 0.3])}. Following Meng et al.’s distance measure [31], we
derive ED(LIH1, LIH2) = 0, by which we conclude that these two sets are equal. However, one can obviously see that
these two sets are different. To overcome this disadvantage, we define a new distance measure for LIHFSs.

3.1 A distance measure

Let LIH1 =
{(

sθ(i), h̄(sθ(i))
)
|sθ(i) ∈ S

}
and LIH2 =

{(
sθ(j), h(sθ(j))

)
|sθ(j) ∈ S

}
be any two LIHFSs for the predefined

linguistic term set S = {s1, s2, ..., s2t+1}.
The distance between intervals r̄ik ∈ h̄(sθ(i)) and r̄jp ∈ h̄(sθ(j)) is defined as follows [8]:

d(r̄ik , r̄jp) =
1

2

(
| r−ik − r−jp |+ |r+ik − r+jp |

)
(5)

Using formula (5), the distance between r̄ik ∈ h̄(sθ(i)) and h̄(sθ(j)) is defined as follows [32]:

−−−−−−−−−−→
d
(
r̄ik , h̄(sθ(j))

)
= min

r̄jp∈h(sθ(j))

1

2

(
|r−ik − r−jp |+ |r+ik − r+jp |

)
(6)

Furthermore, the distance from h̄(sθ(i)) to h̄(sθ(j)) is defined as follows:

−−−−−−−−−−−−−−→
d
(
h̄(sθ(i)), h̄(sθ(j))

)
=

1

m

m∑
k=1:r̄ik∈h̄(sθ(i))

min
r̄jp∈h(sθ(j))

1

2

(
|r−ik − r−jp |+ |r+ik − r+jp |

)
(7)

Let S = {s1, s2, ..., s2t+1} be the predefined linguistic term set, and let sθ(i), sθ(j)
∈ S. Then, the distance measure between sθ(i) and sθ(j) is defined as follows [48]:

d
(
sθ(i), sθ(j)

)
= 1

2t |θ(i)− θ(j)|

(8)

Based on distance measures on interval possible membership degrees and on linguistic variables, the distance measure
from an element in a LIHFS to another LIHFS is defined as follows:

Definition 3.1. Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
The distance measure from

(
sθ(i), h̄(sθ(i))

)
∈ LIH1 to LIH2 is defined as follows:

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h(sθ(i))

)
, LIH2

)
= min

(sθ(j),h(sθ(j)))∈LIH2

1

2

((
1
2t
|θ(i)− θ(j)|∨

(
1

m

m∑
k=1:r̄ik

∈h̄(sθ(i))

min
r̄jp∈h(sθ(j))

|r−ik − r−jp |+ |r+ik − r+jp |
2

))
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+
(

1
2t
|θ(i)− θ(j)| ∧

(
1

m

m∑
k=1:r̄ik

∈h̄(sθ(i))

min
r̄jp∈h(sθ(j))

|r−ik − r−jp |+ |r+ik − r+jp |
2

 
= min

(sθ(j),h(sθ(j)))∈LIH2

1

2

(
1
2t

|θ(i)− θ(j)|+
(

1

m

m∑
k=1:r̄ik

∈h̄(sθ(i))

min
r̄jp∈h(sθ(j))

|r−ik − r−jp |+ |r+ik − r+jp |
2

))

(9)

Similarly, the distance measure from
(
sθ(j), h̄(sθ(j))

)
∈ LIH2 to LIH1 is defined as follows:

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(j), h(sθ(j))

)
, LIH1

)
= min

(sθ(i),h(sθ(i)))∈LIH1

1

2

(
1
2t

|θ(j)− θ(i)|+
(
1

n

n∑
p=1:r̄jp∈h̄(sθ(j))

min
r̄ik

∈h(sθ(i))

|r−jp − r−ik |+ |r+jp − r+ik |
2

))

(10)

Following Definition 3.1, the distance measure from one LIHFS to the other is defined as follows:

Definition 3.2. Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
The distance measure from LIH1 to LIH2 is defined as follows:

−−−−−−−−−−−→
d (LIH1, LIH2) =

1

|LIH1|
∑|LIH1|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h̄(sθ(i))

)
, LIH2

)
(11)

and the distance measure from LIH2 to LIH1 is defined as follows:

−−−−−−−−−−−→
d (LIH2, LIH1) =

1

|LIH2|
∑|LIH2|

j=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(j), h̄(sθ(j))

)
, LIH1

)
(12)

where
(
sθ(i), h̄(sθ(i))

)
∈ LIH1,

(
sθ(j), h̄(sθ(j))

)
∈ LIH2,|LIH1| and |LIH2| denote the numbers of terms in the LIHFSs

LIH1 and LIH2, respectively.

Example 3.3. Let S = {s1, s2, s3, s4, s5} be the predefined linguistic term set, and let LIH1 = {(s2, [0.2, 0.3], [0.5, 0.6]),
(s3, [0.1, ][0.2], [0.4, 0.5])} and LIH2 = {(s2, [0.3, 0.4]), (s3, [0.5, 0.6], [0.7, 0.8]), (s4, [0.2, 0.4])}.

Following formulae (9), (10), (11) and (12), we have
−−−−−−−−−−−→
d (LIH1, LIH2) = 0.0938,

−−−−−−−−−−−→
d (LIH2, LIH1) = 0.1167.

Example 3.3 shows that
−−−−−−−−−−−→
d (LIH1, LIH2) ̸=

−−−−−−−−−−−→
d(LIH2, LIH1), namely, distance measures listed in Definition 3.2

dissatisfy symmetry. To address this problem, we further introduce the following distance measure between LIHFSs:

Definition 3.4. Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
The distance measure between LIH1 and LIH2 is defined as:

d (LIH1, LIH2) =

−−−−−−−−−−−→
d (LIH1, LIH2) +

−−−−−−−−−−−→
d(LIH2, LIH1)

2
(13)

where
−−−−−−−−−−−→
d (LIH1, LIH2) and

−−−−−−−−−−−→
d (LIH2, LIH1) as shown in Definition 3.2.

In Example 3.3, we have d (LIH1, LIH2) = 0.105 using formula (13).
To show the rationality of the distance measure shown in Definition 3.4, we consider the following property:

Property 3.5. Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
Then,
(i) d(LIH1, LIH2) = 0 if and only if LIH1 = LIH2, namely, if and only if

(
sθ(j), h̄(sθ(j))

)
∈ LIH1 and

(
sθ(i), h̄(sθ(i))

)
∈

LIH2 for all i = 1, ..., |LIH1| and all j = 1, ..., |LIH2|;
(ii) 0 ≤ d(LIH1, LIH2) ≤ 1;
(iii) d(LIH1, LIH2) = d(LIH2, LIH1).
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Proof. For (i): When d(LIH1, LIH2) = 0, we have
−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h̄(sθ(i))

)
, LIH2

)
= 0 for any

(
sθ(i), h̄(sθ(i))

)
∈ LIH1 and

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(j), h̄(sθ(j))

)
, LIH1

)
= 0 for any

(
sθ(j), h(sθ(j))

)
∈ LIH2. Thus,

min
(sθ(j),h(sθ(j)))∈LIH2

1

2

(
1
2t |θ(i)− θ(j)| +

(
1

m

m∑
k=1:r̄ik∈h̄(sθ(i))

min
r̄jp∈h(sθ(j))

|r−ik − r−jp |+ |r+ik − r+jp |
2

 = 0

(14)

and

min
(sθ(i),h(sθ(i)))∈LIH1

1

2

(
1
2t |θ(j)− θ(i)| +

(
1

n

n∑
p=1:r̄jp∈h̄(sθ(j))

min
r̄ik∈h(sθ(i))

|r−jp − r−ik |+ |r+jp − r+ik |
2

 = 0

(15)

Following formula (14), we get |θ(i) − θ(j)| = 0 and |r−ik − r−jp | = |r+ik − r+jp | = 0 for some
(
sθ(j), h̄(sθ(j))

)
∈ LIH2

with r̄ik ∈ h̄(sθ(i)), k = 1, 2, ..., m. Thus,
(
sθ(i), h̄(sθ(i))

)
=

(
sθ(j), h̄(sθ(j))

)
∈ LIH2.

Similarly, we obtain
(
sθ(j), h̄(sθ(j))

)
∈ LIH1 based on formula (15).

On the basis of the above discussions, we have d(LIH1, LIH2) = 0. On the other hand, from
(
sθ(j), h̄(sθ(j))

)
∈ LIH1

and
(
sθ(i), h̄(sθ(i))

)
∈ LIH2 for all i = 1, ..., |LIH1| and all j = 1, ..., |LIH2|, one can easily obtain that d(LIH1, LIH2) =

0 based on formula (13).
The conditions (ii) and (iii) are obvious.

Property 3.6. Let LIH1,LIH2 and LIH3 be any three LHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
If we have

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h̄(sθ(i))

)
, LIH3

)
≤

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(j), h̄(sθ(j))

)
, LIH3

)
and

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(l), h(sθ(l))

)
, LIH1

)
≤

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(l), h(sθ(l))

)
, LIH2

)
for any

(
sθ(i), h̄(sθ(i))

)
∈ LIH1, any

(
sθ(j), h̄(sθ(j))

)
∈ LIH2 and any

(
sθ(l), h̄(sθ(l))

)
∈ LIH3, then d(LIH1, LIH3) ≤

d(LIH2, LIH3).

Proof. From Definitions 3.2 and 3.4, we obtain

d(LIH1, LIH3) =
1

2

(
1

|LIH1|
∑|LIH1|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h̄(sθ(i))

)
, LIH3

)
+

1

|LIH3|
∑|LIH3|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(l), h̄(sθ(l))

)
, LIH1

))
and

d(LIH2, LIH3) =
1

2

(
1

|LIH2|
∑|LIH2|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(j), h̄(sθ(j))

)
, LIH3

)
+

1

|LIH3|
∑|LIH3|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(l), h̄(sθ(l))

)
, LIH2

))

Because
−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h̄(sθ(i))

)
, LIH3

)
≤

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(j), h̄(sθ(j))

)
, LIH3

)
for any

(
sθ(i) , h̄(sθ(i))

)
∈ LIH1, and any (sθ(j),

h̄(sθ(j))) ∈ LIH2, we derive

1

|LIH1|
∑|LIH1|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h̄(sθ(i))

)
, LIH3

)
≤ 1

|LIH2|
∑|LIH2|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(j), h̄(sθ(j))

)
, LIH3

)
Similarly, we have

1

|LIH3|
∑|LIH3|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(l), h̄(sθ(l))

)
, LIH1

)
≤ 1

|LIH3|
∑|LIH3|

i=1

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(l), h̄(sθ(l))

)
, LIH2

)
from

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(l), h(sθ(l))

)
, LIH1

)
≤

−−−−−−−−−−−−−−−−−−−→
d
((
sθ(l), h(sθ(l))

)
, LIH2

)
for any

(
sθ(l), h̄(sθ(l))

)
∈ LIH3. Thus, d(LIH1, LIH3) ≤

d(LIH2, LIH3).
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3.2 Correlation of LIHFSs

This subsection focuses on the correlation of LIHFSs. To do this, we first introduce the following notations:
Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}. If

−−−−−−−−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h̄(sθ(i))

)
,
(
sθ(j), h̄(sθ(j))

))
=
−−−−−−−−−−−−−−−−−−−→
d
((
sθ(i), h̄(sθ(i))

)
, LIH2

)
(16)

for
(
sθ(i), h̄(sθ(i))

)
∈ LIH1 and

(
sθ(j), h̄(sθ(j))

)
∈ LIH2. Then, we denote

(
sθ(j), h̄(sθ(j))

)
as

(
siθ(j), h̄

i(sθ(j))
)
.

Formula (9) shows that
(
sθ(j), h̄(sθ(j))

)
∈ LIH2 is the element with the smallest distance to

(
sθ(i), h̄(sθ(i))

)
∈ LIH1.

To denote this relationship, we give the above notation.

Similarly, with respect to
(
sθ(i), h̄(sθ(i))

)
and

(
siθ(j), h̄

i(sθ(j))
)
, if we have

d(r̄ik , r̄jp) = d
(
r̄ik , h̄

i(sθ(j))
)

(17)

with r̄jp ∈ h̄i(sθ(j)), then r̄jp is denoted by r̄ikjp , where r̄ik ∈ h̄(sθ(i)), k =1, 2, ..., m.
Using these notations, the correlation of LIHFSs is defined as follows:

Definition 3.7. Let LIH1 =
(
sθ(i), h̄(sθ(i))

)
and LIH2 =

(
sθ(j), h̄(sθ(j))

)
be any two LIHFSs for the predefined

linguistic term set S = {s1, s2, ..., s2t+1}. Then, their correlation is defined as:

C(LIH1, LIH2) =
∑

(sθ(i),h̄(sθ(i)))∈LIH1

1

(2t+ 1)
2
#h̄(sθ(i))

∑
r̄ik∈h̄(sθ(i));r̄

ik
jp

∈h̄i(sθ(j))

(
θ(i)r−ikθ(j)r

ik,−
jp

+ θ(i)r+ikθ(j)r
ik,+
jp

)

+
∑

(sθ(j),h̄(sθ(j)))∈LIH2

1

(2t+ 1)
2
#h̄(sθ(j))

∑
r̄jp∈h̄(sθ(j));r̄

jp
ik

∈h̄j(sθ(i))

(
θ(j)r−jpθ(i)r

jp,−
ik

+ θ(j)r+jpθ(i)r
jp,+
ik

)

(18)

where #h̄(sθ(i)) and #h̄(sθ(j)) denote the number of elements in h̄(sθ(i)) and h̄(sθ(j)), respectively, and the other
notations as shown above.

Example 3.8. Let S = {s1, s2, s3, s4, s5} be the predefined linguistic term set. Let LIH1 = {(s1, [0.4, 05], [0.7, 0.8]),
(s3, [0.2, 0.3], [0.5, 0.7], [0.4, 0.6])} and LIH2 = {(s2, [0.2, 0.4]), (s3, [0.5, 0.6], [0.7, 0.9])} be two LIHFSs for S.

Following formula (18), we have C(LIH1, LIH2) = 0.828.

Property 3.9. Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
The correlation defined in formula (18) satisfies:

(i) C(LIH1, LIH1) = 2E(LIH1) with E(LIH1) =
∑

(sθ(i),h̄(sθ(i)))∈LIH1

1
(2t+1)2#h̄(sθ(i))

∑
r̄ik

∈h̄(sθ(i))

(
(θ(i))2(r−ik)

2
+ (θ(i))2(r+ik)

2
)
;

(ii) C(LIH1, LIH2) = C(LIH2, LIH1).

Proof. Following formula (18), one can easily derive the conclusions.

3.3 Two correlation coefficients of LIHFSs

On the basis of the correlation listed in subsection 3.2, this subsection focuses on correlation coefficients of LIHFSs.

Definition 3.10. Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
Then, their correlation coefficients are defined as follows:
(i) The geometric mean based correlation coefficient:

CC1(LIH1, LIH2) =
C(LIH1, LIH2)√

E(LIH1)E(LIH2
LIH1) +

√
E(LIH2)E(LIH1

LIH2)

(19)
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(ii) The maximum based correlation coefficient:

CC2(LIH1, LIH2) =
C(LIH1, LIH2)

max
{
E(LIH1), E(LIH2

LIH1)
}
+max

{
E(LIH2), E(LIH1

LIH2)
}

(20)

where

E(LIH2) =
∑

(sθ(j),h̄(sθ(j)))∈LIH2

1

(2t+1)
2
#h̄(sθ(j))

∑
r̄jp∈h̄(sθ(j))

(
(θ(j))

2
(r−jp)

2
+ (θ(j))

2
(r+jp)

2
)

E(LIH2
LIH1) =

∑
(sθ(j),h̄(sθ(j)))∈LIH2

1

(2t+1)
2
#h̄(sθ(i))

∑
r̄
ik
jp

∈h̄i(sθ(j));r̄ik∈h̄(sθ(i))

(
(θ(j))

2
(rik,−jp

)
2
+ (θ(j))

2
(rik,+jp

)
2
)

E(LIH1
LIH2) =

∑
(sθ(i),h̄(sθ(i)))∈LIH1

1

(2t+1)
2
#h̄(sθ(j))

∑
r̄
jp
ik

∈h̄j(sθ(i));r̄jp∈h̄(s
θ(j)

)

(
(θ(i))

2
(r

jp,−
ik

)
2
+ (θ(i))

2
(r

jp,+
ik

)
2
)

and the other notations as shown above.

Correlation coefficients defined in formulae (19) and (20) neither consider the length of the LIHFSs nor arrange the
interval possible values in an increasing order.

To show the rationality of correlation coefficients listed in Definition 3.7, we consider the following several desirable
properties:

Property 3.11. Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
Then,correlation coefficients defined in formulae (19) and (20) satisfy:
(i) CC1(LIH1, LIH1) = CC2(LIH1, LIH1) = 1;
(ii) CCq(LIH1, LIH2) = CCq(LIH2, LIH1), q = 1, 2;
(iii) 0 ≤ CCq(LIH1, LIH2) ≤ 1, q = 1, 2.

Proof. The conditions (i) and (ii) are obvious.
For (iii): Following formula (19), one can find that CC1(LIH1, LIH2) ≥ 0. According to the Cauchy-Schwarz

inequality
(x1y1 + x2y2 + ...+ xnyn)

2 ≤ (x1
2 + x2

2 + ...+ xn
2)(y1

2 + y2
2 + ...+ yn

2)

where xi, yi ∈ R, i = 1, 2, ..., n, we obtain ∑
(sθ(i),h̄(sθ(i)))∈LIH1

1
(2t+1)2#h̄(sθ(i))

∑
r̄ik

∈h̄(sθ(i));r̄
ik
jp

∈h̄i(sθ(j))

(θ(i)r−
ik

θ(j)rik,−
jp

+θ(i)r+ik θ(j) r
ik,+
jp

))2
=

(
1

(2t+1)2#h̄(sθ(1))

∑
r̄ik

∈h(sθ(1));r̄
ik
jp

∈h̄i(sθ(1))

(θ(1)r−ikθ(1)r
ik,−
jp

)+
1

(2t+1)2#h̄(sθ(1))

∑
r̄ik

∈h(sθ(1));r̄
ik
jp

∈h̄i(sθ(1))

(θ(1)r+ikθ(1)r
ik,+
jp

)

+
1

(2t+1)2#h(sθ(n))

∑
r̄ik

∈h̄(sθ(n));r̄
ik
jp

∈h̄i(sθ(n))

(θ(n)r−ikθ(n)r
ik,−
jp

) +
1

(2t+1)2#h̄(sθ(n))

∑
r̄ik

∈h(sθ(n));r̄
ik
jp

∈h̄i(sθ(n))

(θ(n)r+ikθ(n)r
ik,+
jp

))


2

=

 ∑
r̄ik

∈h(sθ(1));r̄
ik
jp

∈h̄i(sθ(1))

θ(1)r
ik,−
jp√

(2t+1)2#h̄(sθ(1))

θ(1)r−ik√
(2t+1)2#h̄(sθ(1))

+
∑

r̄ik
∈h(sθ(1));r̄

ik
jp

∈h̄i(sθ(1))

θ(1)r+ik√
(2t+1)2#h̄(sθ(1))

θ(1)r
ik,+
jp√

(2t+1)2#h̄(sθ(1))

+
∑

r̄ik
∈h̄(sθ(n));r̄

ik
jp

∈h̄i(sθ(n))

θ(n)r−ik√
(2t+1)2#h̄(sθ(n))

θ(n)r
ik,−
jp√

(2t+1)2#h̄(sθ(n))
+

∑
r̄ik

∈h̄(sθ(n));r̄
ik
jp

∈h̄i(sθ(n))

θ(n)r+ik√
(2t+1)2#h̄(sθ(n))

θ(n)r
ik,+
jp√

(2t+1)2#h̄(sθ(n))


2

≤

 1
(2t+1)2#h̄(sθ(1))

∑
r̄ik

∈h(sθ(1))

(θ(1)r−ik)
2 + 1

(2t+1)2#h̄(sθ(1))

∑
r̄ik

∈h̄(sθ(1))

(θ(1)r+ik )
2

+ 1
(2t+1)2#h̄(sθ(n))

∑
r̄ik

∈h̄(sθ(1))

(θ(n)r−ik)
2 + 1

(2t+1)2#h̄(sθ(n))

∑
r̄ik

∈h̄(sθ(n))

(θ(n)r+ik )
2

 ”.
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+

 1
(2t+1)2#h̄(sθ(1))

∑
r̄
ik
jp

∈h̄i(sθ(1))

(θ(1)r
ik,−
jp

)
2
+ 1

(2t+1)2#h̄(sθ(1))

∑
r̄
ik
jp

∈h̄i(sθ(1))

(θ(1)r
ik,+
jp

)
2

+ 1
(2t+1)2#h̄(sθ(n))

∑
r̄
ik
jp

∈h̄i(sθ(n))

(θ(n)r
ik,−
jp

)
2

+ 1
(2t+1)2#h̄(sθ(n))

∑
r̄
ik
jp

∈h̄i(sθ(n))

(θ(n)rik,+
jp

)
2

 = E(LIH1)E(LIH2
LIH1)

Thus,

∑
(sθ(i),h̄(sθ(i)))∈LIH1

1

(2t+1)2#h̄(sθ(i))

∑
r̄ik

∈h̄(sθ(i));r̄
ik
jp

∈h̄i(sθ(j))

(θ(i)r−ikθ(j)r
ik,−
jp

+ θ(i)r+ikθ(j)r
ik,+
jp

) ≤
√

E(LIH1)E(LIH2
LIH1)

(21)

Similarly, we have

∑
(sθ(j),h̄(sθ(j)))∈LIH2

1

(2t+1)2#h̄(sθ(j))

∑
r̄jp∈h̄(sθ(j));r̄

jp
ik

∈h̄j(s
θ(i)

)

(θ(j)r−jpθ(i)r
jp,−
ik

+ θ(j)r+jpθ(i)r
jp,+
ik

) ≤
√

E(LIH2)E(LIH1
LIH2)

(22)

On the basis of formulae (21) and (22), we obtain

C(LIH1, LIH2) ≤
√

E(LIH1)E(LIH2
LIH1) +

√
E(LIH2)E(LIH1

LIH2)

by which, CC1(LIH1, LIH2) ≤ 1.
Similar to the proof of formula (19), one can derive the conclusions for formula (20).

Property 3.12. Let LIH1 and LIH2 be any two LIHFSs for the predefined linguistic term set S = {s1, s2, ..., s2t+1}.
Then, CC1(LIH1, LIH2) ≥ CC2(LIH1, LIH2).

Formula (19) is the ratio between C(LIH1, LIH2) and

(√
E(LIH1)E(LIH2

LIH1) +
√

E(LIH2)E(LIH1
LIH2)

)
,

and formula (20) is the ratio between C (LIH1, LIH2) and
(
max

{
E(LIH1), E(LIH2

LIH1)
}
+max {E(LIH2), E(LIH1

LIH2)
})

.
It is noteworthy that the optimistic DMs can apply the geometric mean based correlation coefficient, while the pessimistic DMs
may employ the maximum based correlation coefficient.

Example 3.13. Let LIH1 and LIH2 be two LIHFSs for S = {s1, s2, s3, s4, s5}, where

LIH1 = {(s2, [0.1, 0.3], [0.5, 0.7]), (s3, [0.3, 0.4], [0.6, 0.8])}

LIH2 = {(s1, [0.1, 0.2], [0.5, 0.6], [0.7, 0.9]), (s4, [0.4, 0.6])}
Following formula (19), the geometric mean based correlation coefficient of LIH1 and LIH2 is CC1(LIH1, LIH2) = 0.811;

On the basis of formula (20), the maximum based correlation coefficient of LIHFSs LIH1 and LIH2 is CC2(LIH1, LIH2) =
0.720.

3.4 Two shapley weighted correlation coefficients of LIHFSs

As many researchers noted, interdependences between the weights of elements in a set may exist [26, 33]. To address this issue,
the Shapley function with respect to fuzzy measures is an ideal tool that has been widely used in decision making. This subsection
defines two Shapley weighted correlation coefficients of LIHFSs.

Definition 3.14. Let LIH1 =
{
LIH1

1 , LIH
1
2 , ..., LIH

1
n

}
and LIH2 =

{
LIH2

1 , LIH
2
2 , · · · , LIH2

n

}
be two collections of LIHFSs

for the predefined linguistic term set S = {s1, s2, ..., s2t+1}. The Shapley weighted correlation coefficients are defined as follows:
(i) The geometric mean based Shapley weighted correlation coefficient:

CCφ
1 (LIH

1, LIH2) =
∑n

l=1
φl(µ,N)CC1(LIH

1
l , LIH

2
l )
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(23)

(ii) The maximum based Shapley weighted correlation coefficient:

CCφ
2 (LIH

1, LIH2) =
∑n

l=1
φl(µ,N)CC2(LIH

1
l , LIH

2
l )

(24)

where φl(µ,N) is the Shapley value of the index l with respect to the fuzzy measure on the set N = {1, 2, ..., n}, l = 1, 2, ..., n.

Note that the Shapley weighted correlation coefficients offered in Definition 3.9 have the similar properties for linguistic
interval hesitant fuzzy correlation coefficients listed in Definition 3.7.

Property 3.15. Let LIH1 =
{
LIH1

1 , LIH
1
2 , ..., LIH

1
n

}
and LIH2 =

{
LIH2

1 , LIH
2
2 , · · · , LIH2

n

}
be two collections of LIHFSs

for the predefined linguistic term set S = {s1, s2, ..., s2t+1}. The Shapley weighted correlation coefficients defined in formulae
(23) and (24) satisfy:
(i) CCφ

1 (LIH
1, LIH1) = CCφ

2 (LIH
1, LIH1) = 1;

(ii) CCφ
q (LIH

1, LIH2) = CCφ
q (LIH

2, LIH1), q = 1, 2;
(iii) 0 ≤ CCφ

q (LIH
1, LIH2) ≤ 1, q = 1, 2.

Subsection 3.3 offers two correlation coefficients of LIHFSs based on the assumption that the weights of elements are inde-
pendent and have the same importance. On the other hand, the Shapley weighted correlation coefficients (23) and (24) define the
interactive weights of elements in a set. When there are no interactions between the weights of elements, the Shapley weighted
correlation coefficients degenerate to the associated weighted correlation coefficients as follows:
(i) The geometric mean based weighted correlation coefficient:

CCω
1 (LIH

1, LIH2) =
∑n

l=1
ωlCC1(LIH

1
l , LIH

2
l )

(25)

(ii) The maximum based weighted correlation coefficient:

CCω
2 (LIH

1, LIH2) =
∑n

l=1
ωlCC2(LIH

1
l , LIH

2
l )

(26)

where ωl is the weight of the index l, l = 1, 2 , ..., n.
Similar to the property above mentioned, we have the following properties for the (Shapley) weighted correlation coefficients.

Property 3.16. Let LIH1 =
{
LIH1

1 , LIH
1
2 , ..., LIH

1
n

}
and LIH2 =

{
LIH2

1 , LIH
2
2 , ..., LIH

2
n

}
be two collections of LIHFSs

for the predefined linguistic term set S = {s1, s2, ..., s2t+1}. Then,
(i) CCφ

1 (LIH
1, LIH2) ≥ CCφ

2 (LIH
1, LIH2);

(ii) CCω
1 (LIH

1, LIH2) ≥ CCω
2 (LIH

1, LIH2).

Similar to the analysis of correlation coefficients defined in Subsection 3.3, the pessimistic DMs can choose the geometric
mean based (Shapley) weighted correlation coefficient, while the optimistic DMs prefer to adopt the maximum based (Shapley)
weighted correlation coefficient.

4 An approach to pattern recognition

Pattern recognition originated from 1920s is the primary implementation approach, which aims to identify sample based on
mathematical methods. This section applies the defined correlation coefficients of LIHFSs to present an approach to pattern
recognition with linguistic interval hesitant fuzzy information.

Considering a pattern recognition problem, let A = {a1, a2, ..., am} be the set of patterns, and let C = {c1, c2, ..., cn} be the
set of features. A LIHFS LIHij is the evaluation of the pattern ai with respect to the feature cj , i = 1, 2, ...,m; j = 1, 2, ..., n. Let
LIHi = {LIHi1, LIHi2, ..., LIHin}, i = 1, 2, ...,m, be the sets of LIHFSs for patterns, and let LIH = {LIH1, LIH2, ..., LIHn}
be the set of LIHFSs for the sample p with respect to the feature set C.

When the weight information is exactly known, we can apply correlation coefficients of LIHFSs offered in Section 3 to
discriminate the sample p belonging to which type of patterns. Otherwise, we first need to determine the weight vector on the
feature set. Since all patterns are non-inferior, and the weight vector makes the comprehensive values the bigger the better, the
following programming model for the optimal fuzzy measure µ on C is established:

min

n∑
j=1

m∑
i=1

φcj (µ,C)d(LIHij , LIHj)
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s.t.


µ(C) = 1
µ(S) ≤ µ(T ), ∀S, T ⊆ C s.t.S ⊆ T
µ(cj) ∈ Wj , µ(cj) ≥ 0, j = 1, 2, ..., n

(27)

where φcj (µ,C) is the Shapley value of the feature cj with respect to the fuzzy measure µ on C, Wj is the range of the known
weight information.

When µ is a 2-additive measure, model (27) can be equivalently transformed into the following programming model:

min
3− n

2

n∑
j=1

m∑
i=1

d(LIHij , LIHj)µ(cj) +
1

2

n∑
j=1

m∑
i=1

d(LIHij , LIHj) (µ(cj , ci)− µ(ci))

s.t.


∑

ci⊆S\cj
(µ(cj , ci)− µ(ci)) ≥ (s− 2)µ(cj), ∀cj ∈ S ⊆ C, s ≥ 2∑

{cj ,ci}⊆C

µ(cj , ci)− (c− 2)
∑

cj∈C

µ(cj) = 1

µ(cj) ∈ Wj , µ(cj) ≥ 0, j = 1, 2, ..., n

(28)

When there is no interaction between the weights of features, models (27) and (28) reduce to programming models for the
optimal additive weight vector on the feature set C.

Based on the defined correlation coefficients of LIHFSs and the built models for the optimal weight vector, the following
algorithm for pattern recognition with linguistic interval hesitant fuzzy information is offered:
Step 1: Let LIHi = {LIHi1, LIHi2, ..., LIHin}, i = 1, 2, ...,m, be the sets of LIHFSs for the patterns in A = {a1, a2, ..., am}

with respect to the feature set C = {c1, c2, ..., cn}, and let LIH = {LIH1, LIH2, ..., LIHn} be the set of LIHFSs for
the sample p with respect to the feature set C. When the weight information is partly known, model (28) is applied to
determine the optimal 2-addtive measure on the feature set C. Otherwise, go to step 3;

Step 2: The Shapley weighted correlation coefficients is adopted to calculate correlation coefficient between each pattern and
the sample p;

Step 3: On the basis of correlation coefficients obtained in Step 3, the sample p is recognized.
Step 4: End.

Example 4.1. [59] We consider a set of diagnoses A = {a1: Viral fever, a2: Malaria, a3: Typhoid} and a set of symptoms
C = {c1: Temperature, c2 : Headache, c3 : Cough} for the predefined linguistic term set S = {s1: poor, s2: slightly poor, s3:
fair, s4: slightly good, s5: good}.

Suppose that a patient p with respect to the features in C is a set of LIHFSs, where
LIH (patient) = {⟨c1, {(s2, [0.1, 0.2], [0.3, 0.5])}⟩ , ⟨c2 , {(s1, [0, 6, 0.8]) ,
(s4, [0.2, 0.3], [0.4, 0.5]) , ⟨c3, {(s5, [0.4, 0.6])}⟩}.
The LIHFSs for each diagnosis ai , i = 1, 2, 3, with respect to the features in C are offered as follows:

LIH1(Viral fever) = {⟨c1, {(s2, [0.3, 0.5], [0.6, 0.8])}⟩ ,

⟨c2, {(s1, [0.2, 0.4], [0.4, 0.5]) , (s2, [0.3, 0.5])}⟩ , ⟨c3, {(s4, [0.4, 0.5])}⟩}
LIH2(Malaria) = {⟨c1, {(s5, [0.1, 0.3], [0.4, 0.5])}⟩ ,

⟨c2, {(s2, [0.3, 0.6], [0.7, 0.8]) , (s3, [0.7, 0.9])}⟩ , ⟨c3, {(s1, [0.8, 0.9])}⟩}
LIH3(Typhoid) = {⟨c1, {(s2, [0.6, 0.7], [0.8, 0.9])}⟩ ,

⟨c2, {(s2, [0.1, 0.2], [0.3, 0.5]) , (s5, [0.5, 0.6])}⟩ , ⟨c3, {(s3, [0.5, 0.7])}⟩}
Furthermore, the weight vector on the feature set C is defined as Wc = ([0.1, 0.4], [0.3, 0.4], [0.25, 0.3]).
To recognize the patient p belonging to which diagnosis, the following procedure is offered:
Step 1: Following model (28), we get:
µ(c1) = 0.4, µ(c2) = 0.3, µ(c3) = 0.25, µ(c1, c2) = 0.7, µ(c1, c3) = 0.7, µ(c2, c3) = 0.55.
Step 2: The Shapley values using formula (2) are derived as follows:
φc1(µ,C) = 0.25, φc2(µ,C) = 0.4, φc3(µ,C) = 0.35.
Meanwhile, the geometric mean based Shapley weighted correlation coefficients are
CCφ

1 (LIH1, LIH) = 0.937, CCφ
1 (LIH2, LIH) = 0.865, CCφ

1 (LIH3, LIH) = 0.974.
and the maximum based Shapley weighted correlation coefficients are

CCφ
2 (LIH1, LIH) = 0.618, CCφ

2 (LIH2, LIH) = 0.452, CCφ
2 (LIH3, LIH) = 0.615.

Step 3: On the basis of CCφ
1 (LIHi, LIH), i = 1, 2, 3, we conclude that the patient p had typhoid. However, the patient p

had viral fever based on CCφ
2 (LIHi, LIH), i = 1, 2, 3.

Step 4: End.
The result shows that different optimal patterns may be derived for different correlation coefficients. Thus, the DMs need to

choose the used correlation coefficients following their risk preferences and decision-making problems.
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5 An approach to decision making with LIHFSs

This section considers decision making with linguistic interval hesitant fuzzy information. Without loss of generality, let S =
{s1, s2, ..., s2t+1} be the predefined linguistic term set, let A = {a1, a2, ..., am} be the set of alternatives, and let C = {c1, c2, ..., cn}
be the set of attributes. Suppose that LIHij is the LIHFS of the alternative ai for the attribute cj , i = 1, 2, ...,m; j = 1, 2, ..., n.
By LIH = (LIHij)m×n, we denote linguistic interval hesitant fuzzy decision matrix.

5.1 Models to determine the optimal weight vector

As the analysis for pattern recognition, when the weight information is incompletely known, we first need to determine the weight
vector on the attribute set.

Let LIHj be the jth column of the linguistic interval hesitant fuzzy decision matrix LIH, and let

LIH+
j =

m∪
i=1

LIHij = {(smaxmi=1 θ(ij), [
m

max
i=1

{r−ij}, max{r+ij}])|r̄ij = [r−ij , r
+
ij ] ∈ LIHij , i = 1, 2, ...,m}

LIH−
j =

m∪
i=1

LIHij = {(sminm
i=1 θ(ij), [

m

min
i=1

{r−ij},
m

min
i=1

{r+ij}])|r̄ij = [r−ij , r
+
ij ] ∈ LIHij , i = 1, 2, ...,m}

for each j = 1, 2, ..., n and Sθ(ij) ∈ S.
Let LIH+ = {LIH+

1 , LIH+
2 , ..., LIH+

n } and LIH− = {LIH−
1 , LIH−

2 , ..., LIH−
n }.

When the weight information on the attribute set is incompletely known, we establish the following programming model for
obtaining the optimal fuzzy measure µ on C:

min

n∑
j=1

m∑
i=1

φcj (µ,C)
d(LIHij , LIH

+
j )

d(LIHij , LIH
+
j ) + d(LIHij , LIH

−
j )

s.t.


µ(C) = 1
µ(S) ≤ µ(T ), ∀S, T ⊆ C s.t.S ⊆ T
µ(cj) ∈ Wj , µ(cj) ≥ 0, j = 1, 2, ..., n

(29)

where φcj (µ,C) is the Shapley value of the attribute cj with respect to the fuzzy measure µ on C, d(LIHij , LIH
+
j ) is the distance

measure between LIHij and LIH+
j , d(LIHij , LIH

−
j ) is the distance measure between LIHij and LIH−

j , and Wj is the known
weight information.

Similarly, we derive the following programming model for ascertaining the optimal 2-additive measure µ on C:

min
3− n

2

n∑
j=1

m∑
i=1

d(LIHij , LIH
+
j )

d(LIHij , LIH
+
j ) + d(LIHij , LIH

−
j )

µ(cj)

+
1

2

n∑
j=1

m∑
i=1

d(LIHij , LIH
+
j )

d(LIHij , LIH
+
j ) + d(LIHij , LIH

−
j )

(µ(cj , ci)− µ(ci))

s.t.


∑

ci⊆S\cj
(µ(cj , ci)− µ(ci)) ≥ (s− 2)µ(cj), ∀cj ∈ S ⊆ C, s ≥ 2∑

{cj ,ci}⊆C

µ(cj , ci)− (c− 2)
∑

cj∈C

µ(cj) = 1

µ(cj) ∈ Wj , µ(cj) ≥ 0, j = 1, 2, ..., n

(30)

where the notations as shown in model (29).
When there are no interactions between the weights of attributes, models (29) and (30) degenerate to models for the optimal

additive measure on the attribute set C.

5.2 An algorithm

Following the above discussions, this subsection introduces the following algorithm for multi-attribute decision making with
linguistic interval hesitant fuzzy information.
Step 1: Let LIH = (LIHij)m×n be the linguistic interval hesitant fuzzy decision matrix. When all attributes are benefit,

the attribute values needn’t transformation. Otherwise, we need to transform LIH = (LIHij)m×n into LIH ′ =

(LIH ′
ij)m×n, where LIH ′

ij =

{
LIHij cj is a benefit attribute

(LIHij)
c cj is a cost attribute

for all i = 1, 2, ...,m; j = 1, 2, ..., n.
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Step 2: When the weight information is exactly known, go to step 4. Otherwise, model (30) is used to determine the optimal
fuzzy measure µ on the attribute set C;

Step 3: Formulae (23) or (24) and (25) or (26) are adopted to calculate the (Shapley) weighted correlation coefficients between
LIH ′

i and LIH+ as well as LIH ′
i and LIH−, i = 1, 2, ...,m;

Step 4: The following formulae are applied to calculate the ranking values:

r
CCφ

p

i =
CCφ

p (LIH
′
i, LIH

+)

CCφ
p (LIH ′

i, LIH
+) + CCφ

p (LIH ′
i, LIH

−)
p = 1, 2

(31)

r
CCω

p

i =
CCω

p (LIH
′
i, LIH

+)

CCω
p (LIH

′
i, LIH

+) + CCω
p (LIH

′
i, LIH

−)
p = 1, 2

(32)

for all i = 1, 2, ...,m, where LIH ′
i denotes the ith row of LIH ′;

Step 5: Following the ranking values of r
CCφ

p

i or r
CCω

p

i , i = 1, 2, ...,m; p = 1, 2, the best choice is obtained;
Step 6: End.

Example 5.1. Considering a tunnel bidding, four constructors A = {a1, a2, a3, a4} submit their tenders for building a tunnel.
To evaluate these constructors, the following four attributes are considered c1: credit (Bidder’s credit is an important index for
bidding evaluation, the higher the bidder’s credit rate is, the higher the winning probability will be); c2: tender offer (The tender
offer is the total price of a contract that is calculated and determined by contractor, the traditional approach adopts the principle
of minimum tender offer); c3: the limitation of project time (The limitation of project time is one of the important indexes to
measure construction enterprises. The length of project time directly affects the economic benefits of construction enterprises.
Under the premise of ensuring quality, the shorter the time is, the higher the economic benefits will be); c4: the scale of company
(Generally speaking, companies with large scale, good equipment, high-quality talents and good management measures have a
certain influence on winning). To avoid influencing each other, the DMs are required to provide their preferences anonymously.
Because of the limited expertise and the complexity of considering attributes, it is difficult or impossible to require the DMs to
offer quantitative judgments. To address this issue, the DMs are allowed to apply linguistic variables. Meanwhile, the DMs
may also want to express their quantitative judgments for the given linguistic variables. Furthermore, the DMs may hesitate on
several possible values. To cope with these situations, LIHFSs are good tools. Let S = {s1 : poor, s2: slightly poor, s3: fair, s4:
slightly good, s5 : good} be the predefined linguistic term set. Suppose that the linguistic interval hesitant fuzzy decision matrix
LIH = (LIHij)4×4 is offered in Table 1.

c1 c2 c3 c4

a1

{(s2, [0.1, 0.3] ,
[0.5, 0.7]) ,

(s4, [0.2, 0.3])}
{(s3, [0.7, 0.3])} {(s1, [0.6, 0.7])}

{(s5, [0.3, 0.5] ,
[0.7, 0.8])}

a2
{(s5, [0.4, 0.6] ,

[0.8, 0.9])} {(s4, [0.2, 0.5])} {(s3, [0.1, 0.2])}
{(s2, [0.3, 0.5] ,

[0.5, 0.7])}

a3
{(s2, [0.5, 0.7]) ,
(s4, [0.2, 0.3])}

{(s3, [0.1, 0.4])}
{(s3, [0.2, 0.4] ,

[0.5, 0.6])}
{(s4, [0.2, 0.4]) ,

[0.7, 0.8])}

a4
{(s5, [0.3, 0.5]) ,

[0.4, 0.6])}
{(s4, [0.6, 0.7] ,

[0.8, 0.9])} {(s3, [0.8, 0.9])} {(s1, [0.5, 0.7])}

Table 1: Linguistic interval hesitant fuzzy decision matrix LIH

To select the best constructor, the following steps are needed:
Step 1: Because c2 and c3 are cost attributes, we need to transform the linguistic interval hesitant fuzzy decision matrix LIH

into the normalized linguistic interval hesitant fuzzy decision matrix LIH ′ as shown in Table 2:
Step 2: Suppose that weight vector on the attribute set is defined as Wc = ([0.15, 0.2], [0.3, 0.4], [0.25, 0.3], [0.2, 0.25]).

According to model (30), we obtain:
µ(c1) = 0.2, µ(c2) = 0.3, µ(c3) = 0.25, µ(c4) = 0.2, µ(c1, c2) = 0.55, µ(c1, c3) = 0.45, µ(c2, c3) = 0.55, µ(c1, c4) = 0.4,

µ(c2, c4) = 0.5, µ(c3, c4) = 0.45.
Furthermore, the Shapley values are
φc1(µ,C) = 0.22, φc2(µ,C) = 0.33, φc3(µ,C) = 0.25, φc4(µ,C) = 0.2.
Step 3: The geometric mean based Shapley weighted correlation coefficients are
CCφ

1 (LIH
′
1, LIH

+) = 0.963, CCφ
1 (LIH

′
2, LIH

+) = 0.957, CCφ
1 (LIH

′
3, LIH

+) = 0.952, CCφ
1 (LIH

′
4, LIH

+) = 0.978,
CCφ

1 (LIH
′
1, LIH

−) = 0.822, CCφ
1 (LIH

′
2, LIH

−)
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c1 c2 c3 c4

a1

{(s2, [0.1, 0.3] ,
[0.5, 0.7]) ,

(s4, [0.2, 0.3])}
{(s2, [0.3, 0.7])} {(s4, [0.3, 0.4])}

{(s5, [0.3, 0.5] ,
[0.7, 0.8])}

a2
{(s5, [0.4, 0.6] ,

[0.8, 0.9])} {(s1, [0.5, 0.8])} {(s2, [0.8, 0.9])}
{(s2, [0.3, 0.5] ,

[0.5, 0.7])}

a3
{(s2, [0.5, 0.7]) ,
(s4, [0.2, 0.3])}

{(s2, [0.6, 0.9])}
{(s2, [0.6, 0.8] ,

[0.4, 0.5])}
{(s4, [0.2, 0.4] ,

[0.7, 0.8])}

a4
{(s5, [0.3, 0.5] ,

[0.4, 0.6])}
{(s1, [0.3, 0.4] ,

[0.1, 0.2])} {(s2, [0.1, 0.2])} {(s1, [0.5, 0.7])}

Table 2: Normalized linguistic interval hesitant fuzzy decision matrix LIH ′

= 0.889, CCφ
1 (LIH3, LIH

−) = 0.842, CCφ
1 (LIH

′
4, LIH

−) = 0.979.
and the maximum based Shapley weighted correlation coefficients are
CCφ

2 (LIH
′
1, LIH

+) = 0.554, CCφ
2 (LIH

′
2, LIH

+) = 0.461, CCφ
2 (LIH

′
3, LIH

+) = 0.615, CCφ
2 (LIH

′
4, LIH

+) = 0.244, CCφ
2 (LIH

′
1,

LIH−) = 0.228, CCφ
2 (LIH

′
2, LIH

−) = 0.210, CCφ
2 (LIH

′
3, LIH

−) = 0.221, CCφ
2 (LIH

′
4, LIH

−) = 0.611.

Step 4: Using formulae (31) and (32), the following ranking values are derived: r
CC

φ
1

1 = 0.540, r
CC

φ
1

2 = 0.518, r
CC

φ
1

3 = 0.531,

r
CC

φ
1

4 = 0.500, r
CC

φ
2

1 = 0.708, r
CC

φ
2

2 = 0.686, r
CC

φ
2

3 = 0.736, r
CC

φ
2

4 = 0.285.

Step 5: Following the values of r
CC

φ
1

i , i = 1, 2, 3, 4, the constructor a1 is the best choice. On the basis of the values of r
CC

φ
2

i ,
i = 1, 2, 3, 4, the constructor a3 is the best choice.

Step 6: End.
In this example, when we assume that there is no interaction between the weights of attributes, the ranking values are obtained

as follows:

r
CCω

1
1 = 0.540, r

CCω
1

2 = 0.518, r
CCω

1
3 = 0.541, r

CCω
1

4 = 0.500, r
CCω

2
1 = 0.717, r

CCω
2

2 = 0.682, r
CCω

2
3 = 0.745, r

CCω
2

4 = 0.276,

by which we drive the same ranking order r
CCω

p

3 ≻ r
CCω

p

1 ≻ r
CCω

p

2 ≻ r
CCω

p

4 , p = 1, 2, namely, the constructor a3 is the best choice.

5.3 Comparison analysis

In Example 5.1, when Meng et al.’s method [31] is applied, the final ranking values are obtained as follows:
(i) The ranking values obtained from the generalized linguistic interval hesitant fuzzy hybrid weighted averaging (GLIHFHWA)
operator are:
Ē(LIH1) = [1.1, 1.85], Ē(LIH2) = [1.42, 1.95], Ē(LIH3) = [2.93, 4.03], Ē(LIH4) = [0.61, 0.83];
(ii) The ranking values obtained from the generalized linguistic interval hesitant fuzzy hybrid 2-additive Shapley averaging
(GLIHFH2SA) operator are:
Ē(LIH1) = [1.09, 1.92], Ē(LIH2) = [1.5, 1.88], Ē(LIH3) = [1.43, 1.99], Ē(LIH4) = [0.56, 0.79], where λ = 2.

One can see that the same ranking order LIH3 ≻ LIH2 ≻ LIH1 ≻ LIH4 is obtained, namely, the constructor a3 is the best
choice.

For simplicity, ranking orders with respect to the different methods are listed in Table 3.
Table 3 shows that different methods might lead to different ranking orders and different optimal choices. When the DMs

make decisions, they are required to choose decision-making method according to the actual requirement. Generally speaking, we
suggest the DMs to apply the Shapley weighted correlation coefficients because they can deal with the interactive characteristics
between elements in a set and seem to be simpler than Meng et al.’s method [31] in some aspects.

6 Conclusions

LIHFSs are efficient tools in dealing with qualitative and quantitative vague information that appears in the engineering and
scientific applications. On the other hand, correlation coefficient is one of the widely used techniques in decision-making theory.
This paper took the advantages of them and presented two correlation coefficients of LIHFSs by using the defined distance
measure. Meanwhile, two linguistic interval hesitant fuzzy Shapley weighted correlation coefficients are defined to address the
situation where the weights of elements in a set are interactive. It’s worth noting that the Shapley weighted correlation coefficient
can be seen as an extension of correlation coefficients. Considering the situation where the weight information is incompletely
known, models for optimal 2-additive measures on the feature set and on the attribute set are constructed. Furthermore, a
method to pattern recognition and decision making under linguistic interval hesitant fuzzy environment with incomplete weight
information is developed, respectively. Meanwhile, associated practical examples are offered to show the concrete applications of
the developed theoretical results and a comparison analysis is offered.

It is noteworthy that new results extend the application of LIHFSs. In the future, we will continue to research correlation
coefficients of other types of fuzzy sets, such as hesitant linguistic intuitionistic fuzzy sets (HLIFSs) [44], linguistic hesitant fuzzy
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Methods
Ranking
values
of a1

Ranking
values
of a2

Ranking
values
of a3

Ranking
values
of a4

Ranking
orders

New method by using
the geometric mean

based Shapley weighted
correlation coefficient

0.540 0.518 0.531 0.500 r1 ≻ r3 ≻ r2 ≻ r4

New method by using
the maximum based
Shapley weighted

correlation coefficient

0.708 0.686 0.736 0.285 r3 ≻ r1 ≻ r2 ≻ r4

New method by
using the geometric mean

based weighted
correlation coefficient

0.540 0.518 0.541 0.500 r3 ≻ r1 ≻ r2 ≻ r4

New method by
using the maximum

based Shapley weighted
correlation coefficient

0.717 0.682 0.745 0.276 r3 ≻ r1 ≻ r2 ≻ r4

Meng et al.’s
method [31]
with the

GLIHFHWA operator

[1.1, 1.85] [1.42, 1.95] [2.93, 4.03] [0.61, 0.83]
LIH3 ≻ LIH2

≻ LIH1 ≻ LIH4

Meng et al.’s
method [31]
with the

GLIHFH2SA operator

[1.09, 1.92] [1.5, 1.88] [1.43, 1.99] [0.56, 0.79]
LIH3 ≻ LIH2

≻ LIH1 ≻ LIH4

Table 3: Ranking orders with respect to the different aggregation indices

sets (LHFSs) [25], and interval-valued hesitant fuzzy linguistic sets (IVHFLSs) [45]. Besides the theory aspect, we will study
their applications in some fields, including software evaluation [5], information system selection [36], hotel selection [56] and coal
mine safety evaluation [35].
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