تعداد نشریات | 26 |
تعداد شمارهها | 550 |
تعداد مقالات | 5,697 |
تعداد مشاهده مقاله | 7,962,423 |
تعداد دریافت فایل اصل مقاله | 5,346,298 |
Asymptotic algorithm for computing the sample variance of interval data | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 16، شماره 4، مهر و آبان 2019، صفحه 83-96 اصل مقاله (232.97 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2019.4783 | ||
نویسندگان | ||
A. Ko lacz* ؛ P. Grzegorzewski | ||
Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland | ||
چکیده | ||
The problem of the sample variance computation for epistemic inter\-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the sample variance in a feasible time is proposed. Conditions required for its application with finite samples are discussed and some properties of the algorithm are also given. It appears that our new algorithm could be effectively applied in definitely more situations than methods used so far. | ||
کلیدواژهها | ||
Data analysis؛ interval data؛ sample variance | ||
مراجع | ||
[1] C. Angulo, D. Anguita, L. Gonzalez-Abril, J. A. Ortega, Support vector machines for interval discriminant analysis, Neuro- computing, 71 (2008), 1220-1229. [2] J. Antoch, R. Miele, Use of genetic algorithms when computing variance of interval data, In: B. Fichet et al. (Eds.), Clas- sification and Multivariate Analysis for Complex Data Structures, Studies in Classification, Data Analysis, and Knowledge Organization, Springer, 2011. [3] A. Blanco-Fernandez, A. Colubi, M. Garca-Barzana, A set arithmetic-based linear regression model for modelling interval- valued responses through real-valued variables, Information Sciiences, 247 (2013), 109-122. [4] C. Cappelli, P. D'Urso, F. Di Iorio, Regime change analysis of interval-valued time series with an application to PM10, Chemometrics and Intelligent Laboratory Systems, 146 (2015), 337-346. [5] I. Couso, D. Dubois, Statistical reasoning with set-valued information: Ontic vs. epistemic views, International Journal of Approximate Reasoning, 55 (2014), 1502-1518. [6] E. Dantsin, V. Kreinovich, A. Wolpert, G. Xiang, Population variance under interval uncertainty: a new algorithm, Reliable Computing, 12 (2006), 273-280. [7] P. D'Urso, L. De Giovanni, R. Massari, Trimmed fuzzy clustering for interval-valued data, Advances Data Analysis and Classification, 9 (2015), 21-40. [8] P. D'Urso, P. Giordani, A least squares approach to principal component analysis for interval valued data, Chemometrics and Intelligent Laboratory Systems, 70 (2004), 179-192. [9] A. P. Duarte Silva, P. Brito, Discriminant analysis of interval data: An assessment of parametric and distance-based ap- proaches, Journal of Classification, 32 (2015), 516-541. [10] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpre, M. Aviles, Exact bounds on nite populations of interval data, Reliable Computing, 11 (2005), 207-233. [11] M. Gagolewski, Spread measures and their relation to aggregation functions, European Journal of Operational Research, 241 (2015), 469-477. [12] A. Jalal-Kamali, V. Kreinovich, Estimating correlation under interval uncertainty, Mechanical Systems and Signal Process- ing, 37 (2013), 43-53. [13] A. Ko lacz, P. Grzegorzewski, Measures of dispersion for multidimensional data, European Journal of Operational Research, 251 (2016), 930-937. [14] V. Kreinovich, S. Ferson, Computing best-possible bounds for the distribution of a sum of several variables is NP-hard, International Journal of Approximate Reasoning, 41 (2006), 331-342. [15] V. Kreinovich, H. T. Nguyen, B. Wu, On-line algorithms for computing mean and variance of interval data, and their use in intelligent systems, Information Sciences, 177 (2007), 3228-3238. [16] V. Kreinovich, G. Xiang, Fast algorithms for computing statistics under interval uncertainty: An overview, In: V. N. Huynh et al. (Eds.), Interval/Probabilistic Uncertainty and Non-Classical Logics, Springer, 2008, 19-31. [17] V. Kreinovich, G. Xiang, S. Ferson, Computing mean and variance under DempsterShafer uncertainty: Towards faster algorithms, International Journal of Approximate Reasoning, 42 (2006), 212-227. [18] R. E. Moore, Interval Analysis, Prentice-Hall, 1966. [19] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to Interval Analysis, SIAM, 2009. [20] H. T. Nguyen, V. Kreinovich, B. Wu, G. Xiang, Computing Statistics under Interval and Fuzzy Uncertainty, Springer, 2012. [21] A. Oussous, F. Z. Benjelloun, A. A. Lahcen, S. Belfkih, Big Data technologies: A survey, Journal of King Saud University- Computer and Information Sciences, 30 (2018), 431-448. [22] A. B. Ramos-Guajardo, A. Colubi, G. Gonzalez-Rodrguez., Inclusion degree tests for the Aumann expectation of a random interval, Information Sciences, 288 (2014), 412-422. [23] A. B. Ramos-Guajardo, P. Grzegorzewski, Distance-based linear discriminant analysis for interval-valued data, Information Sciences, 372 (2016), 591-60. [24] B. Sinova, A. Colubi, M. A. Gil, G. Gonzalez-Rodrguez, Interval arithmetic-based linear regression between interval data: Discussion and sensitivity analysis on the choice of the metric, Informtion Sciences, 199 (2012), 109-124. [25] A. Skowron, A. Jankowski, S. Dutta, Interactive granular computing, Granular Computing, 1 (2016), 95-113. [26] R. M. C. R. Souza, D. C. F. Queiroz, F. J. A. Cysneiros, Logistic regression-based pattern classiers for symbolic interval data, Pattern Analysis and Applications, 14 (2011), 273-282. [27] T. Sunaga, Theory of interval algebra and its application to numerical analysis, RAAG Memoirs, Ggujutsu Bunken Fukuy- kai, Tokyo, 2 (1958), 29-46, 547-564. [28] S. A. Vavasis, Nonlinear Optimization: Complexity Issues, Oxford University Press, New York, 1991. [29] H. Wang, Z. Xu, H. Fujita, S. Liu, Towards felicitous decision making: An overview on challenges and trends of Big Data, Information Sciences, 367-368 (2016), 747-765. [30] M. Warmus, Calculus of approximations, Bulletin de l'Academie Polonaise de Sciences, 4 (1956), 253-257. [31] G. Xiang, M. Ceberio, V. Kreinovich, Computing population variance and entropy under interval uncertainty: linear-time algorithms, Reliable Computing, 13 (2007), 467-488. | ||
آمار تعداد مشاهده مقاله: 896 تعداد دریافت فایل اصل مقاله: 199 |