تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,159 |
تعداد مشاهده مقاله | 9,098,532 |
تعداد دریافت فایل اصل مقاله | 5,935,425 |
DATA ENVELOPMENT ANALYSIS WITH FUZZY RANDOM INPUTS AND OUTPUTS: A CHANCE-CONSTRAINED PROGRAMMING APPROACH | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 2، شماره 2، دی 2005، صفحه 21-29 اصل مقاله (291.99 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2005.479 | ||
نویسندگان | ||
SAEED RAMEZANZADEH ![]() | ||
1DEPARTMENT OF MATHEMATICS, POLICE UNIVERSITY, TEHRAN, IRAN | ||
2DEPARTMENT OF INDUSTRIAL ENGINEERING, BU-ALI SINA UNIVERSITY, HAMEDAN, IRAN | ||
3DEPARTMENT OF MATHEMATICS, TEHRAN NORTH BRANCH, ISLAMIC AZAD UNIVERSITY, TEHRAN, IRAN | ||
چکیده | ||
In this paper, we deal with fuzzy random variables for inputs and outputs in Data Envelopment Analysis (DEA). These variables are considered as fuzzy random flat LR numbers with known distribution. The problem is to find a method for converting the imprecise chance-constrained DEA model into a crisp one. This can be done by first, defuzzification of imprecise probability by constructing a suitable membership function, second, defuzzification of the parameters using an α-cut and finally, converting the chance-constrained DEA into a crisp model using the method of Cooper [4]. | ||
کلیدواژهها | ||
Data Envelopment Analysis؛ Chance-constrained DEA؛ Fuzzy random variable؛ Triangular fuzzy number | ||
مراجع | ||
[1] A. Charnes, W. W. Cooper and G. Yu, Models for dealing with imprecise data in DEA, Managment Science, 45 (1999) 597-607. [2] D. Chakraborty, J. R. Rao and R. N. Tiwari, Multiobjective imprecise chance-constrained programming problem, J. Fuzzy Math, 1 (2) (1993) 377–387. Corrigendum to: Multiobjective imprecise-chance constrained programming problem, J. Fuzzy Math, 2 (1) (1994) 231–232. [3] D. Chakraborty, Redefining chance-constrained programming in fuzzy environment, Fuzzy Sets and Systems , 125 (2002) 327-333. [4] W. W. Cooper, H. Deng, Z. M. Huang and S. X. Li, Satisfying DEA models under Chance constraints, The Annals of Operations Research, 66 (1996a) 279-295. [5] W. W. Cooper, H. Deng, Z. M. Huang and S. X. Li, Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopmaent analysis, Journal of the Operational Research Society, 53 (2002a) 1347-1356. [6] W. W. Cooper, H. Deng, Z. M. Huang and S. X. Li, Chance constrained programming approaches to congestion in stochastic data envelopmaent analysis, European Journal of Operational Research, 155 (2004) 487-501. [7] W. Guangyvan and Z. Yue, The theory of fuzzy stochastic processes, Fuzzy Sets and Systems, 51 (1992) 161-178. [8] W. Guangyuan and Q. Zhong, Linear programming with fuzzy random variable coefficients, FSS, 57 (1993) 295-311. [9] P. Gao and H. Tanaka, Fuzzy DEA : A pereceptual evaluation method, Fuzzy Sets and Systems, 119 (2001) 149-160. [10] J. L. Hougaard, Fuzzy scores of technical efficiency, European Journal of Operation Research, 115 (1999). [11] P. Kall and S. W. Wallace, Stochastic Programming, John Wiley &Sons, New York, 1994. [12] C. Kao and S. T. Liu, Fuzzy Efficiency Measures in Data Envelopment Analysis, Fuzzy Sets and Systems, 113 (2000) 529-541. [13] H. Kwakernaak, Fuzzy random variables, definitions and theorems, Inf. Sci., 15 (1978) 1-29. [14] B. Liu, Fuzzy random chance-constrained programming, IEEE Transactions on Fuzzy Systems, 9 (5) (2001) 713–720. [15] B. Liu, Fuzzy random dependent-chance programming, IEEE Transactions on Fuzzy Systems, 9 (5) (2001) 721–726. [16] M.K. Luhandjula, Fuzziness and randomness in an optimization framework, Fuzzy Sets and Systems, 77 (1996) 291–297. [17] M. K. Luhandjula and M. M.Gupta, On fuzzy stochastic optimization, Fuzzy Sets and Systems, 81 (1996) 47–55. [18] O.B. Olesen and N. C. Petersen, Chance constrained efficiency evaluation, Management Science, 41 (1995) 442-457. [19] M. L. Puri and D.A. Ralescu, Fuzzy random variables, J.Math. Anal. Appl., 114 (1986) 409-422. [20] S. Saati, A. Memariani and G. R. Jahanshahloo, Efficiency analysis and ranking of DMUs with fuzzy data, Fuzzy Optimization and Decision Making, 1 (2002) 255-256. [21] B. Seaver and K. Triantis, A fuzzy clustering approach used in evaluating technical efficiency measures in manufacturing, Journal of productivity Analysis, 3 (1992) 337-363. [22] J. K. Sengupta, A Fuzzy System Approach in Data Envelopment Analysis, Computers Math. Applic. 24 (1992). | ||
آمار تعداد مشاهده مقاله: 2,428 تعداد دریافت فایل اصل مقاله: 2,084 |