تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,159 |
تعداد مشاهده مقاله | 9,098,469 |
تعداد دریافت فایل اصل مقاله | 5,935,387 |
The KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 8، دوره 16، شماره 5، آذر و دی 2019، صفحه 77-95 اصل مقاله (214.82 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2019.4908 | ||
نویسندگان | ||
F. Song* ؛ Z. Z Wu | ||
College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, P.R. China | ||
چکیده | ||
The aim of present paper is to study a constrained programming with generalized $\alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $\alpha-$univex, $\alpha-$preunivex, pseudo $\alpha-$univex and $\alpha-$unicave fuzzy mappings, and we discover that $\alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $\alpha-$univex fuzzy mappings and get some properties. In the last, we derive necessary and sufficient Karush-Kuhn-Tucker conditions and its dual problems with generalized differentiable $\alpha-$univex fuzzy mappings for fuzzy constrained programming problem. | ||
کلیدواژهها | ||
Fuzzy mappings؛ triangular fuzzy number؛ $alpha-$univex؛ $g-$differentiability؛ fuzzy optimization | ||
مراجع | ||
[1] B. Aghezzaf, M. Hachimi, Generalized invexity and duality in multiobjective programming problems, Journal of Global Optimization, 18(1) (2000), 91-101. [2] T. Antczak, Relationships between pre-invex concepts, Nonlinear Analysis, Theory, Methods and Applications, 60(2) (2005), 349-367. [3] M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear programming: Theory and algorithms, Wiley Interscience Publishers, 2006. [4] C. R. Bector, S. Chandra, S. Gupt, S. K. Suneja, Univex functions and univex nonlinear programming, In: Proceedings of the Administrative Sciences Association of Canada, 1 (1992), 115-124. [5] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151(3) (2005), 581-599. [6] A. Benisrael, B. Mond, What is invexity?, Journal of the Australian Mathematical Society Ser. B, 28(1) (1986), 1-9. [7] C. R. Bector, C. Singh, B-vex functions, Journal of Optimization Theory and Applications, 71(2) (1991), 237-253. [8] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141. [9] C. R. Bector, S. K. Suneja, C. S. Lalitha, Generalized B-vex functions and generalized B-vex programming, Journal of Optimization Theory and Applications, 76(3) (1993), 561-576. [10] Y. Chalcocano, W. A. Lodwick, R. Osuna-Gomez, A. Ruanlizana, The Karush-Kuhn-Tucker optimality conditions for fuzzy optimization problems, Fuzzy Optimization and Decision Making, 15(1) (2016), 57-73. [11] Y. Chalcocano, W. A. Lodwick, H. Romanflores, The Karush-Kuhn-Tucker optimality conditions for a class of fuzzy optimization problems using strongly generalized derivative, Joint Ifsa World Congress and Naps Annual Meeting, (2013), 203-208. [12] Y. Chalcocano, W. A. Lodwick, A. Rufianlizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optimization and Decision Making, 12(3) (2013), 305-322. [13] Y. Chalcocano, H. Roman-Flores, M. D. Jimenez-Gamero, Generalized derivative and π-derivative for set-valued functions, Information Sciences, 181(11) (2011), 2177-2188. [14] S. S. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Transactions on Systems, Man and Cybernetics, 2(1) (1972), 30-34. [15] P. Diamond, P. Kloeden, Metric spaces of fuzzy sets: Theory and applications, World Scientic Publishing Co., Inc., River Edge, N,J., 1994. [16] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18(1) (1986), 31-43. [17] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80(2) (1981), 545-550. [18] A. Jayswal, R. Kumar, Some nondifferentiable multiobjective programming under generalized d-V-type-I univexity, Journal of Computational and Applied Mathematics, 229(1) (2009), 175-182. [19] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24(3) (1987), 301-317. [20] L. F. Li, S. Y. Liu, J. K. Zhang, On fuzzy generalized convex mappings and optimality conditions for fuzzy weakly univex mappings, Fuzzy Sets and Systems, 280 (2015), 107-132. [21] C. P. Liu, Some characterizations and applications on strongly α-preinvex and strongly α-invex functions, Journal of Industrial & Management Optimization, 4(4) (2008), 727-738. [22] S. K. Mishra, R. P. Pant, J. S. Rautela, Generalized α-invexity and nondifferentiable minimax fractional program- ming, Journal of Computational and Applied Mathematics, 206(1) (2007), 122-135. [23] S. K. Mishra, R. P. Pant, J. S. Rajendra, Generalized α-univexity and duality for nondifferentiable minimax fractional programming, Nonlinear Analysis, Theory, Methods and Applications, 70(1) (2009), 144-158. [24] S. K. Mishra, S. Y. Wang, K. K. Lai, Optimality and duality for multiple-objective optimization under generalized type I univexity, Journal of Mathematical Analysis and Applications, 303(1) (2005), 315-326. [25] S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189(3) (1995), 901-908. [26] S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets and Systems, 48(1) (1992), 129-132. [27] M. A. Noor, Fuzzy preinvex functions, Fuzzy Sets and Systems, 64(1) (1994), 95-104. [28] M. A. Noor, On generalized preinvex functions and monotonicities, Journal of Inequalities in Pure and Applied Mathematics, 5(4) (2004), 1-9. [29] R. Osuna-Gomez, Y. Chalcocano, B. Hernandezjimenez, I. Aguirrecipe, Optimality conditions for fuzzy constrained programming problems, Fuzzy Sets and Systems, 362 (2019), 35-54. [30] R. Osuna-Gomez, Y. Chalcocano, A. Ruanlizana, B. Hernandezjimenez, Necessary and sufficient conditions for fuzzy optimality problems, Fuzzy Sets and Systems, 296 (2016), 112-123. [31] R. Osuna-Gomez, B. Hernandezjimenez, Y. Chalcocano, G. Ruizgarzon, New efficiency conditions for multiobjective interval-valued programming problems, Information Sciences, 420 (2017) 235-248. [32] M. Panigrahi, G. Panda, S. Nanda, Convex fuzzy mapping with differentiability and its application in fuzzy opti- mization, European Journal of Operational Research, 185(1) (2008), 47-62. [33] R. P. Pant, J. S. Rautela, α-invexity and duality in mathematical programming, Journal of Mathematical Analysis and Approximation Theory, 2 (2006), 104-114. [34] M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications, 91(2) (1983), 552-558. [35] J. S. Rautela, R. P. Pant, Duality in mathematical programming under α-univexity, Journal of Mathematical Analysis and Approximation Theory, 1 (2007), 72-83. [36] L. Stefanini, M. Arana-Jimenez, Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability, Fuzzy Sets and Systems, 362 (2019), 1-34. [37] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161(11) (2010), 1564-1584. [38] Y. Syau, Generalization of preinvex and B-vex fuzzy mappings, Fuzzy Sets and Systems, 120(3) (2001), 533-542. [39] Y. Syau, Invex and generalized convex fuzzy mappings, Fuzzy Sets and Systems, 115(3) (2000), 455-461. [40] A. K. Tripathy, G. Devi, Mixed type duality for nondifferentiable multiobjective fractional programming under generalized (d, ρ, φ, θ)-type I univex function, Applied Mathematics and Computation, 219 (2013), 9196-9201. [41] G. X. Wang, C. X. Wu, Directional derivatives and subdifferential of convex fuzzy mappings and application in convex fuzzy programming, Fuzzy Sets and Systems, 138(3) (2003), 559-591. [42] H. Wu, The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzy-valued objective functions, Fuzzy Optimization and Decision Making, 8(1) (2009), 1-28. [43] H. Wu, The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function, Mathematical Methods of Operations Research, 66(2) (2007), 203-224. [44] Z. Z.Wu, J. P. Xu, Generalized convex fuzzy mappings and fuzzy variational-like inequality, Fuzzy Sets and Systems, 160(11) (2009), 1590-1619. [45] Z. Z. Wu, J. P. Xu, Nonconvex fuzzy mappings and the fuzzy pre-variational inequality, Fuzzy Sets and Systems, 159(16) (2008), 2090-2103. [46] X. M. Yang, D. Li, On properties of preinvex functions, Journal of Mathematical Analysis and Applications, 256(1) (2001), 229-241. | ||
آمار تعداد مشاهده مقاله: 488 تعداد دریافت فایل اصل مقاله: 305 |