تعداد نشریات | 27 |
تعداد شمارهها | 612 |
تعداد مقالات | 6,232 |
تعداد مشاهده مقاله | 9,356,671 |
تعداد دریافت فایل اصل مقاله | 6,107,698 |
Fuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 9، دوره 16، شماره 5، آذر و دی 2019، صفحه 97-112 اصل مقاله (727.45 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2019.4909 | ||
نویسندگان | ||
H. Y. Yue* 1؛ W. Yang2؛ S. B. Li2؛ S. Y. Jiang2 | ||
1School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, PR China | ||
2School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, PR China | ||
چکیده | ||
This paper addresses the problem of adaptive fuzzy tracking control for a class of nonlinearly parameterized systems with unknown control directions. In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functions which can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to detect the unknown control direction and based on the backstepping technique, the adaptive fuzzy controller is designed. The main advantages of this paper are that (1) in the existing results the separation principle is used to deal with the nonlinearly parameterized functions, unlike them in this paper, the FLS are applied to approximate the nonlinearly parameterized functions, (2) by using the minimal learning parameters (MLP) algorithm, only one parameter needs to be adjusted online in the controller design procedure, which reduces the online computation burden greatly, (3) the Nussbaum-gain technique is introduced to resolve the unknown control direction problems. It is proven that the proposed control scheme renders the closed-loop system stable in the sense of semiglobal uniformly ultimately bounded (UUB). Finally, simulation results are provided to show the effectiveness of the proposed approach. | ||
کلیدواژهها | ||
Fuzzy logic system؛ backstepping technique؛ nonlinearly parameterized systems؛ minimal learning parameters algorithm؛ unknown control directions | ||
مراجع | ||
[1] B. Chen, X. P. Liu, K. F. Liu, C. Lin, Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica, 45 (2009), 1530-1535. [2] W. S. Chen, L. C. Jiao, R. H. Li, J. Li, Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances, IEEE Xplore: IEEE Transactions on Fuzzy Systems, 18(4) (2010), 674-685. [3] W. S. Chen, L. C. Jiao, Adaptive tracking for periodically time-varying and nonlinearly parameterized systems using multilayer neural networks, IEEE Transactions on Neural Networks, 21(2) (2010), 345-351. [4] H. B. Du, H. H. Shao, P. J. Yao, Adaptive neural network control for a class of lowtriangular-structured nonlinear systems, IEEE Transactions Neural Networks, 17(2) (2006), 509-514. [5] Y. Gao, S. C. Tong, Y. M. Li,Observer-based adaptive fuzzy output constrained control for MIMO nonlinear systems with unknown control directions, Fuzzy Sets and Systems, 290 (2016), 79-99. [6] H. Q. Huang, X. P. Liu, K. F. Liu, Adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with non-lower triangular structure, Fuzzy Sets and Systems, 302 (2016), 101-120. [7] X. H. Jiao, T. L. Shen, Y. Z. Sun, Adaptive state feedback control of nonlinearly parameterized time-delay systems, Proceeding of 7th IFAC Symposium on Nonlinear Control Systems, 7 (2007), 770-775. [8] T. S. Li, G. Feng, Z. J. Zou, Y. J. Liu, Robust adaptive fuzzy tracking control for a class of MIMO systems: A minimal- learning-parameters algorithm, Proceedings of the American Control Conference, (2009), 3106-3111. [9] T. S. Li, S. C. Tong, G. Feng, A novel robust adaptive-fuzzy-tracking control for a class of nonlinear MIMO systems, IEEE Transactions on Fuzzy Systems, 18(1) (2010), 150-160. [10] Y. M. Li, S. C. Tong, Adaptive fuzzy backstepping output feedback control of nonlinear uncertain systems with unknown virtual control coefficients using MT-lters, Neurocomputing, 74 (2011), 1557-1563. [11] Y. M. Li, S. C. Tong, T. S. Li, Adaptive fuzzy output feedback control of uncertain nonlinear systems with unknown backlash- like hysteresis, Information Sciences, 198 (2012), 130-146. [12] W. Lin, C. J. Qian, Adaptive control of nonlinearly parameterized systems: The smooth feedback case, IEEE Trans. Autom. Control, 47(8) (2002), 1249-1266. [13] Y. J. Liu, S. C. Tong, W. Wang, Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems, Fuzzy Sets and Systems, 160 (2009), 2727-2754. [14] H. Liu, S. G. Li, H. X. Wang, Y. G. Sun, Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones, Information Sciences, 454-455 (2018), 30-45. [15] L. J. Long, Z. Wang, J. Zhao, Switched adaptive control of switched nonlinearly parameterized systems with unstable subsys- tems, Automatica, 54 (2015), 217-228. [16] W. X. Shi, B. Q. Li, Adaptive fuzzy control for feedback linearizable MIMO nonlinear systems with prescribed performance, Fuzzy Sets and Systems, 344 (2018), 70-89. [17] S. C. Tong, Y. Li, Y. M. Li, Y. J. Liu, Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Transactions on Systems, Man, and Cybernetics Part B, 41(6) (2011), 1693-1704. [18] L. X. Wang, Adaptive fuzzy systems and control design and stability analysis, NJ: Prentice-Hall, Englewood Cliffs, 1994. [19] M. Wang, B. Chen, Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems, Fuzzy Sets and System, 159 (2008), 949-967. [20] N. Wang, S. C. Tong, Observer-based adaptive fuzzy control of a class of MIMO non-strict feedback nonlinear systems, Journal of the Franklin Institute, 355 (2018), 4873-4896. [21] L. B. Wu, G. H. Yang, Adaptive fuzzy tracking control for a class of uncertain nonaffine nonlinear systems with dead-zone inputs, Fuzzy Sets and Systems, 290 (2016), 1-21. [22] L. B. Wu, G. H. Yang, Robust adaptive fault-tolerant control for a class of uncertain nonlinear systems with multiple time delays, Journal of Process Control, 41 (2016), 1-13. [23] T. S. Wu, M. Karkoub, W. S. Yu, C. T. Chen, M. G. Her, K. W. Wu, Anti-sway tracking control of tower cranes with delayed uncertainty using arobust adaptive fuzzy control, Fuzzy Sets and Systems, 290 (2016), 118-137 [24] X. L. Wu, X. J. Wu, X. Y. Luo, Q. M. Zhu, X. P. Guan, Neural network-based adaptive tracking control for nonlinearly parameterized systems with unknown input nonlinearities, Neurocomputing, 82 (2012), 27-142. [25] Y. S. Yang, C. J. Zhou, Robust adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems via small-gain approach, Information Sciences, 170 (2005), 211-234. [26] H. Y. Yue, J. M. Li, Adaptive fuzzy dynamic surface control for a class of perturbed nonlinear time-varying delay systems with unknown dead-zone, International Journal of Automation and Computing, 9(5) (2012), 545-554. [27] H. Y. Yue, J. M. Li, Adaptive fuzzy tracking control for a class of perturbed nonlinear time-varying delays systems with unknown control direction, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21(4) (2013), 497-531. [28] H. Y. Yue, S. Q. Yu, Adaptive fuzzy tracking control for a class of stochastic nonlinearly parameterized systems with distributed input delay, Journal of the Franklin Institute, 353 (2016), 713-734. [29] H. Y. Yue, J. R. Shi, L. Y. Du, X. J. Li, Adaptive fuzzy tracking control for a class of perturbed nonlinearly parameterized systems using minimal learning parameters algorithm, Iranian Journal of Fuzzy Systems, 15(3) (2018), 99-116. | ||
آمار تعداد مشاهده مقاله: 339 تعداد دریافت فایل اصل مقاله: 268 |