تعداد نشریات | 29 |
تعداد شمارهها | 630 |
تعداد مقالات | 6,368 |
تعداد مشاهده مقاله | 9,731,207 |
تعداد دریافت فایل اصل مقاله | 6,362,712 |
FUZZY INFORMATION AND STOCHASTICS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 6، دوره 1، شماره 1، تیر 2004، صفحه 43-56 اصل مقاله (250.64 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2004.493 | ||
نویسندگان | ||
Reinhard Viertl؛ Dietmar Hareter* | ||
Department of Statistics and Probability Theory, Vienna University of Technology, Wien, Austria | ||
چکیده | ||
In applications there occur different forms of uncertainty. The two most important types are randomness (stochastic variability) and imprecision (fuzziness). In modelling, the dominating concept to describe uncertainty is using stochastic models which are based on probability. However, fuzziness is not stochastic in nature and therefore it is not considered in probabilistic models. Since many years the description and analysis of fuzziness is subject of intensive research. These research activities do not only deal with the fuzziness of observed data, but also with imprecision of informations. Especially methods of standard statistical analysis were generalized to the situation of fuzzy observations. The present paper contains an overview about of the presentation of fuzzy information and the generalization of some basic classical statistical concepts to the situation of fuzzy data. | ||
کلیدواژهها | ||
Fuzzy numbers؛ Fuzzy Probability Distributions؛ Fuzzy Random Variables؛ Fuzzy Stochastic Processes؛ Decision on Fuzzy Information | ||
مراجع | ||
[1] E.P. Klement, M.L. Puri, D.A. Ralescu, Law of large numbers and central limit theorem for fuzzy random variables, Cybernetics and Systems Research 2, Proc. 7th Europ. Meet., Vienna 1984, 525-529 (1984). [2] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Acad. Publ., Dordrecht, 2000 . [3] G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic - Theory and Applications, Prentice Hall, Upper Saddle River, New Jersey, 1995 . [4] R. Kruse, The strong law of large numbers for fuzzy random variables, Information Science, Vol. 28 (1982) 233-241 . [5] H. Kwakernaak, Fuzzy random variables - I. definition and theorems, Information Science, Vol. 15 (1978) 1-29 . [6] H. Kwakernaak, Fuzzy random variables - II. algorithms and examples, Information Science, Vol. 17 (1979) 253-278 . [7] B. M¨oller, W. Graf, M. Beer, Safety assessment of structures in view of fuzzy randomness, Computers & Structures, Vol. 81 (2003). [8] S. Niculescu, R. Viertl, Bernoulli’s Law of Large Numbers for Vague Data, Fuzzy Sets and Systems, Vol. 50 (1992). [9] M.L. Puri, D.A. Ralescu, Fuzzy Random Variables, Journal of Math. Anal. and Appl., Vol. 114 (1986) 409-422 . [10] C. R¨omer, A. Kandel, Statistical tests for fuzzy data, Fuzzy Sets and Systems, Vol. 72 (1995). [11] J. Sickert, M. Beer, W. Graf, B. M¨oller, Fuzzy probabilistic structural analysis considering fuzzy random functions, in A. Kiureghian, S. Madanat, J. Pestana (Eds.), Applications of Statistics and Probability in Civil Engineering, Milpress, Rotterdam, 2003 . [12] S.M. Taheri, Trends in Fuzzy Statistics, Austrian Journal of Statistics, Vol. 32, No. 3 (2003) 239-257 . [13] R. Viertl, Statistical Methods for Non-Precise Data, CRC Press, Boca Raton, Florida, 1996 . [14] R. Viertl, On the description and analysis of measurements of continuous quantities, Kybernetika, Vol. 38 (2002). [15] P. Filzmoser, R. Viertl, Testing Hypotheses with Fuzzy Data, The Fuzzy p-value, to appear in Metrika. [16] R. Viertl, D. Hareter, Fuzzy Information and Imprecise Probability, to appear in ZAMM. [17] W. Voß (Ed.), Taschenbuch der Statistik, Carl Hauser Verlag, M¨unchen, 2004. [18] G. Wang, Y. Zhang, The theory of fuzzy stochastic processes, Fuzzy Sets and Systems, Vol. 51 (1992). | ||
آمار تعداد مشاهده مقاله: 1,902 تعداد دریافت فایل اصل مقاله: 1,204 |