نقد تکنولوژی در تکامل آنتشیفان تفتان، جنوب شرق ایران

عبارت از: یا، مهدی فتاحی قمی، حسین بیابانکر

چکیده
مطالعه عوامل کنترل کننده آنتشیفان‌ها می‌تواند به تحلیل خطرات ناشی از عوامل بد آنها کمک کند. آنتشیفان تفتان یک آنتشیفان کواترتری در جنوب شرق ایران است که برازش مصرفی این آنتشیفان اثر گرفتگی می‌دهد. این آنتشیفان دارای چندین مرکز فوریت است که با اتماد شالغالن-جنوب شرق از قیدی به نگهداری آنتشیفان‌ها بیشتری و زیست‌شناسی ساختاری و مورد مطالعه قرار گرفت. اطلاعات بدست‌آمده از این ساختار تفتان دهنده یک تنش کششی با اتماد شمال شرق-جنوب غرب در مجموعه آنتشیفان است که بیان می‌کند که وجود آنده یک منطقه کششی در جهت شالغالن-جنوب شرق شده است. اما اطلاعات بدل‌آمده از زاویه و عناصر ساختاری در مجموعه‌ای که آنتشیفان بر روی آنتشیفان‌ها می‌تواند به سازگاری ساختاری و داده‌های آنتشیفان شان می‌تواند در میخیان تکنولوژی فشارش‌ویابسته به گسل‌های تراتسی شکل بگیرد. بر اساس این اطلاعات یک مدل که در آن گسل‌های تراتسی (بعلت اجسام مسیری) بعد از رسیدن به سطح در زیر آنتشیفان یک شاخه پخش می‌شود ارائه شد. در این مدل یک شاخه از یک گسل یا کمکی کم مکانیسم معکوس، به سمت پایین آنتشیفان پیش‌رفت و شاخه دیگری به سمت زیاد و مکانیسم نرمال، به سمت بالا حرکت می‌کند باعث شکل‌گیری یک منطقه کششی شالغالن-جنوب شرق در اتماد دهانه‌ها و همزایان گسل‌های تراتسی شده است. ارائه شد. این مدل فوران بعد آنتشیفان‌ها در فیش دهانه فعال پذیرش هدایت می‌دهد.

واژگان کلیدی: آنتشیفان، تکنولوژی فشاری، گسل‌های معکوس، دایک، خطر.

Partabian_reza@science.usb.ac.ir
m.fatahi7118@yahoo.com
aamoridi@yahoo.com
h.biabangard@science.usb.ac.ir
مقدمه


الگی مطالعات صورت گرفته چهت شناخت منشأ سگنها آتشناشانی، بدون در نظر گرفتن نقش فعل دگرگشایی در جابجایی ماگما می‌باشد. ولی تأکید مطالعات متعددی نیز در رابطه با ارتباط تنها محیط و منطقه‌ای در شکل‌گیری آتشنگری‌ها در محیط‌های تکتونيکی کششی (بهطور مثال Stromboli در ایتالیا)، امتداده‌زی در Pinatubo (بهطور مثال Pinatubo) و فوران Etna در ایتالیا انجام گرفته است. این مطالعات از ساختارهای آتشندگی مانند دایشهای، فرو ریزش‌های جابجای دانه‌ها در مناطق مواد غیرولوژی و همچنین از ایجاد کنشانگری پتوولوژی چهت تعیین تنها موجود در زمان فوران و تفوش ماگما در بوستن زمین برداخته شده است (Tibaldi et al., 2017). بنابراین تعیین محیط‌های تکتونيکی کششی به عنوان مناطق مرتفع چهت فشار و حمل ماگما به سمت بالا در نظر گرفته می‌شود (بهطور مثال Anderson, 1951; Cas and Wright, 1987; Watanabe et al., 1999) و لی امروزه مطالعات صحرایی و مدل‌های تجربی نشان‌دهنده این است که رزیم‌های تکتونيکی فشارشی (Saint Blanquat et al., 1998) می‌توانند به عنوان مکانیسم مناسب چهت حمل تنها ماگما در لیتوسفر نقش ایفا کنند (Galland et al., 2003; Galland et al., 2007; Tibaldi, 2005; Tibaldi, 2008; Gonzalez et al., 2009).

آتش‌نشان‌های آتشفشانی یکی از آتش‌نشان‌های فعال کانون‌ری در جنوب شرق ایران و قسمتی از کمان آتش‌نشان‌های بزرگ سلطانی می‌باشد که در حاشیه قاره‌ای همچون رشته‌های نشان‌دهنده این است که رزیم‌های تکتونيکی فشارشی (Saint Blanquat et al., 1998) می‌توانند به عنوان مکانیسم مناسب چهت حمل تنها ماگما در لیتوسفر نقش ایفا کنند (Galland et al., 2003; Galland et al., 2007; Tibaldi, 2005; Tibaldi, 2008; Gonzalez et al., 2009)

آتش‌نشان‌های آتشفشانی یکی از آتش‌نشان‌های فعال کانون‌ری در جنوب شرق ایران و قسمتی از کمان آتش‌نشان‌های بزرگ سلطانی می‌باشد که در حاشیه قاره‌ای همچون رشته‌های نشان‌دهنده این است که رزیم‌های تکتونيکی فشارشی (Saint Blanquat et al., 1998) می‌توانند به عنوان مکانیسم مناسب چهت حمل تنها ماگما در لیتوسفر نقش ایفا کنند (Galland et al., 2003; Galland et al., 2007; Tibaldi, 2005; Tibaldi, 2008; Gonzalez et al., 2009).

آتش‌نشان‌های آتشفشانی یکی از آتش‌نشان‌های فعال کانون‌ری در جنوب شرق ایران و قسمتی از کمان آتش‌نشان‌های بزرگ سلطانی می‌باشد که در حاشیه قاره‌ای همچون رشته‌های نشان‌دهنده این است که رزیم‌های تکتونيکی فشارشی (Saint Blanquat et al., 1998) می‌توانند به عنوان مکانیسم مناسب چهت حمل تنها ماگما در لیتوسفر نقش ایفا کنند (Galland et al., 2003; Galland et al., 2007; Tibaldi, 2005; Tibaldi, 2008; Gonzalez et al., 2009).
نخستین فوران تفتان شامل گدازه‌ها و سنگهای پیرکلاسیک با ترکیب داسیت و روداسیت است که در ۲۰ کیلومتری غرب و شمال غرب قله کنونی دیده می‌شود (دهانه آی اندر (Gansser, ۱۹۷۱) (شکل ۱). فعالیت درباره تفتان گدازه‌های داسیتی و آندزیت پیکاسون و در ۱۰ کیلومتری شمال غرب بوده است که لاشه‌های آگلومرازی گسترده‌ای را بر جای می‌گذارد. مرکز تفتان در حال حاضر شامل سه دهانه اصلی (ترکوه ۱، مادر کوه ۲ و C شکل ۱) و دو دهانه کچکتر ثانویه که همی‌اند در ارتفاع ۴۵۰۰ واقع هستند، است. انگیزش (۱۹۷۱) تاریخچه فوران این تفتان شامل پنج مرحله است. در حالی که مطالعات اخیر نشان می‌دهد که این تفتان دارای بیش از ۵ مرحله فوران بوده است (بیبان گرد، ۱۳۸۶) به نظر می‌رسد که این تفتان دارای دهانه‌های متعدد

نقطه تکنیکی در تکامل آتشفشان تفتان، جنوب شرق ایران:

نتیجه زمین‌شناسی آتشفشان تفتان با پس زمینه تصویر DEM که محل دهانه‌ها و جشنه‌ها روز آن مشخص شده است.

زمین‌شناسی و جایگاه ساختاري تفتان:

نخستین فوران تفتان شامل گدازه‌ها و سنگهای پیرکلاسیک با ترکیب داسیت و روداسیت است که در ۲۰ کیلومتری غرب و شمال غرب قله کنونی دیده می‌شود (دهانه آی اندر (Gansser, ۱۹۷۱) (شکل ۱). فعالیت درباره تفتان گدازه‌های داسیتی و آندزیت پیکاسون و در ۱۰ کیلومتری شمال غرب بوده است که لاشه‌های آگلومرازی گسترده‌ای را بر جای می‌گذارد. مرکز تفتان در حال حاضر شامل سه دهانه اصلی (ترکوه ۱، مادر کوه ۲ و C شکل ۱) و دو دهانه کچکتر ثانویه که همی‌اند در ارتفاع ۴۵۰۰ واقع هستند، است. انگیزش (۱۹۷۱) تاریخچه فوران این تفتان شامل پنج مرحله است. در حالی که مطالعات اخیر نشان می‌دهد که این تفتان دارای بیش از ۵ مرحله فوران بوده است (بیبان گرد، ۱۳۸۶) به نظر می‌رسد که این تفتان دارای دهانه‌های متعدد

1- Narkoh
2- Madarkoh
بوده که تعدادی از آنها پرشده و حتی ازنظرها مخفی ماندند. فیوزرهای 1396 با مطالعه بر روی گازدهی‌های آتش‌فرشان تفتان، 6 مرحله فوران را شناسایی کرد که به ترتیب سن عبارت‌اند از دهه 8، دهنه سرداریا، 1 دهنه انجکرو، 2 دهنه مادر کوه، دهنه C و دهنه نر کوه که دارای روند تقریبی شمال غرب - جنوب شرق می‌باشد (شکل 1). لیتوژئی‌های اطراف تفتان که اغلب مشتمل بر واژه‌های کرتاسه سین، نهشه‌های فلیش، واحدهای شیلی و ماسه‌سنگی اوسن، آمیزه‌های رنگین، اهک‌های پلازیک می‌باشند (بیابان گردی 1386).

داده‌ها و روش‌ها

مطالعه ساختاري

(1) دهنه انجکرو:

فوران‌های متعدد خیلی از عناصر ساختاری مانند دایک‌ها، به‌خصوص در اطراف مخروط اصلی و دهنه‌های جدید را پوشانده‌اند. دهنه انجکرو (شکل 1 و 2) یکی از دهنه‌های قدیمی‌تر است که به توجه به فرسایش قابل توجه و ایجاد کرانه، آن را برای مطالعه ساختارهای تکتونیکی از جمله دایک‌ها، شکستگی‌ها و فوریزیش جانبه مناسب کرد است. در اطراف دهنه انجکرو گسل‌های متعدد مشاهده می‌شود که به موازات تغییر روند دهنه انجکرو دچار تغییر روند می‌شوند. این برتگاه‌های گسلی که نشان دهنده گسل نرمال هستند حکایت از ایجاد کالدرا در دهنه انجکرو دارد (شکل 3 و 4).

(2) دایک‌ها:

مطالعات دو دهه گذشته نشان داده است که پراکندگی و امتداد دایک‌ها در سنگ‌های میزان تا حد زیادی توسط تکتونیک حاکم بر سنگ‌های میزان کنترل می‌شود که می‌تواند بعنوان یک مکانیسم احتمالی برای حمل و نقل ماگما در پوسته زمین مورد بررسی قرار گیرد (Petford et al., 2000). نفوذ دایک‌ها در یک محیط هموزون باعث شکل‌گیری دایک‌های با کوپی ساخته می‌شود (شکل 2). ولی اگر این محیط تحت تأثیر سیستم تشکیل غیر هموزون تنش تفاضلی باشد آنگاه دایک‌ها در جهت دعوت خاص تنش افقی یا عمود بر تنش حداکثر به‌صورت جهت‌گیری شده آراشیده می‌کنند (شکل 2) (Nakamura, 1977,1978; Geshi 2005; Yamaji and Sato, 2011).

1- Sardarya
2- Anjerk
شکل ۲: نشان دهنده وجود دایک‌های متعدد در قسمت جنوب شرقی دهانه انجرک است. به همان ترتیب، در شکل ۱ نشان دهنده وجود دایک‌هایی متعدد در قسمت جنوب شرقی دهانه انجرک است.

مطالعه صخرایی و پتروگرافی نشان دهنده وجود دایک‌های متعدد در قسمت جنوب شرقی دهانه انجرک است. به همان ترتیب، در شکل ۱ نشان دهنده وجود دایک‌هایی متعدد در قسمت جنوب شرقی دهانه انجرک است.

ب) نقشه تکثیک در تکامل آتش‌نشان نفتان، جنوب شرق ایران.
شکل ۱۲. دهانه انجرک و ساختمان‌های برداشت‌شده از این دهانه. (د) کرانه‌های طبیعی، (۸ و ۹) دایک‌های نفوذ کرده در دهانه انجرک. (د) پرگال‌های گسلی اطراف دهانه انجرک (ه) شکستگی‌های مزدوج برداشت‌شده از دهانه انجرک.

(۲) شکستگی‌ها:
شکستگی‌های مزدوج ازجمله ساختارهای شکل‌برداری‌های مستند که می‌توان از آن‌ها برای تعیین جهت تشکیل‌دهنده استفاده کرد (Belayneh and Cosgrove, 2010) در این مطالعه سعی شد از قسمت‌های متغیره دهانه انجرک این شکستگی‌ها برداشت شود (شکل ۳). سپس با ترسیم رزیداگرام مربطه به مطالعه آماری آن‌ها پرداخته شد (شکل ۳۴). اطلاعات بدست‌آمده از این ساختارها جهت حداکثر تشیع را شمال غرب - جنوب شرق نشان می‌دهد.
مدل‌های متعددی درباره اثرات انتخاباتی و شناسایی تکتونیکی نشان‌دهنده ارتباط تنها و فرو ریزش‌های جانبی انسانی است (Moriya, 1980; Francis and Self, 1987; Francis and Wells, 1988; Lagmay et al., 2006). تمام این مدل‌ها ارتباط بین اسکالاها و فعالیت‌های درون‌جداساز و فرآیندهای جانبی را با نمایش می‌گذارند. یکی از این مدل‌ها، این مدل‌ها نشان‌دهنده ارتباط فلوئور‌شیک انسانی با امتداد دایک‌ها است. در این مدل فلوئور‌شیک انسانی عمود بر دایک‌ها به عنوان امتداد تنها در دیواره به راستی، تنها در دیواره به جهت دایک‌ها در سطح مرتفع‌تر و سطح بالاتر از سطح تنها است (Moriya, 1980; Tibaldi et al., 2005).
همانطور که در معرفی دهانه انحراف عنوان شد، در واقع این دهانه یک کراتر است که قسمت شمال شرقی آن دیواره فوروریزش شده است که می‌توان آن را متأثر از عواملی مانند بستر آتشفشان، ارتباط آنها با نشان‌های محلی و دایک‌ها دانست (Walter and Troll, 2003). روند ساختارهای تکتونیکی بستر آتشفشان مانند گسل‌ها و لاه‌بندی به موازات دایک‌های مخروط آتشفشان است. با توجه به این شواهد می‌توان یک تنش کششی در امتداد شمال شرق- جنوب غرب را پیشنهاد داد که این تنش باعث یافته‌ای دایک‌ها با امتداد شمال غرب- جنوب شرق شده و در ادامه بعد از شکل‌گیری کراتر، وجود این تنش کششی عمود بر این دایک‌ها (به عنوان ساختارهای صفحه‌ای مقاومتر) باعث می‌شود که خودبیانه در راستای شمال شرقی (به موازات کشش) شده است.

(5) امتداد جسم‌های

چشمه‌های معمولاً متأثر از عوامل تکتونیکی مانند گسل‌ها شکل می‌گیرند (Curewitz and Karson, 1997). بررسی روند چشمه‌های اطراف مخروط تفتان، قرار گرفته آنها را در یک امتداد شمال غرب- جنوب شرق نشان می‌دهد. با توجه به اینکه این روند به موازات ساختارهای اصلی منطقة است می‌توان نتیجه گرفت گسل‌هایی در این امتداد باعث شکل‌گیری آنها شده است.

نتایج و بحث:

(1) ارتباط ساختارهای جهت تنش افتقی حداکثر

روندهای کلاتی دایک‌های مطالعه‌شده در دهانه انحراف یک امتداد شمال غرب- جنوب شرق را به موازات امتداد کلی تفتان نشان می‌دهند. با توجه به اینکه به طور کلی این ساختارهای عمود بر جهت کشش شکل می‌گیرند، تنبیه‌ای نهایی کشش در امتداد شمال شرق- جنوب غرب هستند و نشان گرفته شکستگی‌های کششی هستند که در آن‌ها نفوذ
کردنده. از اطلاعاتی که مراجع دیگر ترکیب، جنوب شرق و جنوب غربی جنوب غرب- جنوب شرق و جنوب غربی شرقی آن در جهت شمال شرقی آن قرار دارد اعلام که این امتیاز دهنده این موقعیت تا جدید ممکن است باعث ادامه مدلگیری باشد. این امتیاز دهنده دانشگاه ها و چین خوراکی ها مجموعه زیرین آنتنشان هرستا هستند. ولی در این قسمت بازدهی به این نکته اشکال کرد که امتیاز دهنده است. خودشان همگام آنها یک چرخه کشش عمود بر فشاری فشاری (Saxthariae دگرشکلی فشاری)

پیشگیری را برای این است که آنتنشان ها به یک زیرن تکنولوژی کششی واپسین هستند. این زیرنی کشتی یک موقعیت مناسب را برای یک آمادگی در طول شکستگی های عمومی که عمومی برجهت نشکش کشتی شکل می‌گیرد و جهت اعمال مدلگیری یک ساختاری های عمومی از مدلگیری یک ساختاری H. I

Moinvaziri and Aaminsobhani, 1987 (Aminsohahani, 1987) مدلگیری فشاری یک آمادگی در طول شکستگی های عمومی که عمومی برجهت نشکش کشتی شکل می‌گیرد و جهت اعمال مدلگیری یک ساختاری های عمومی از مدلگیری یک ساختاری H. I

Zarifi et al., 2007 (Zarifi et al., 2007) مدلگیری فشاری یک آمادگی در طول شکستگی های عمومی که عمومی برجهت نشکش کشتی شکل می‌گیرد و جهت اعمال مدلگیری یک ساختاری H. I

Anderson, 1951 (Anderson, 1951) مدلگیری فشاری یک آمادگی در طول شکستگی های عمومی که عمومی برجهت نشکش کشتی شکل می‌گیرد و جهت اعمال مدلگیری یک ساختاری H. I

Saint Blanquat et al., 1998 (Saint Blanquat et al., 1998) مدلگیری فشاری یک آمادگی در طول شکستگی های عمومی که عمومی برجهت نشکش کشتی شکل می‌گیرد و جهت اعمال مدلگیری یک ساختاری H. I

Galland et al, 2003 (Galland et al, 2003) مدلگیری فشاری یک آمادگی در طول شکستگی های عمومی که عمومی برجهت نشکش کشتی شکل می‌گیرد و جهت اعمال مدلگیری یک ساختاری H. I

Marques and Cobbold, 2002 (Marques and Cobbold, 2002) مدلگیری فشاری یک آمادگی در طول شکستگی های عمومی که عمومی برجهت نشکش کشتی شکل می‌گیرد و جهت اعمال مدلگیری یک ساختاری H. I

Yoshida, 2001 (Yoshida, 2001) مدلگیری فشاری یک آمادگی در طول شکستگی های عمومی که عمومی برجهت نشکش کشتی شکل می‌گیرد و جهت اعمال مدلگیری یک ساختاری H. I

...
کشفی را ایجاد می‌کند. با توجه به این هندسه گسل (F1) یک منطقه کششی مناسب جهت نفوذ ماگما به سمت
با ایجاد می‌کند. به طور کلی ماگما در اینجا در انتهای گسل ترکتی اصلی به سمت بالا حرکت کرده و سپس در
امتداد گسل عمودی نفوذ می‌کند. مدل تجربی دیگری هم توسط (Gonzalez et al. 2009) برای منطقه مراکزیاند
که در آن قسمت آتشفشانی‌ها در یک رزم تکتونیکی فشارشی و بر روی یک مجموعه چین و ترکت شکل گرفته‌اند
ارائه گردیدند که شبهه به مدل قبیل حرکت ماگما در انتهای ترکت‌ها و در نهایت ایجاد یک محفظ کششی را در
امتداد همان آتشفشان نشان می‌دهند (شکل 6 (b)).

شکل 6 (a) دید سطحی (plan view) و مقعع (section view) ارتباط گسل ترکتی و مسیر نفوذ ماگما در یک آتشفشان بر اساس مدل
تجربی (Tibaldi, 2008). مدل (Gonzalez et al. 2009) نفوذ ماگما در یک دگرشکل فشارشی و ایجاد منطقه کشش محلی در انتهای مخروط
آتشفشان را نشان می‌دهد.

(3) نقطه تکتونیک در شکل گیری و تکامل آتشفشان تفتان
به طور کلی امتداد دایک‌ها، روند دهانه‌ای قدیمی به جدید و روند چشم‌ها همگی از ساختارهای مانند روند
چین خورده‌گی و امتداد گسل‌هایی که آتشفشان تفتان در آنها نفوذ کرده تبعیت می‌کند که می‌توانند شاهدی بر
تأثیر این ساختارها در نفوذ ماگما و شکل گیری آتشفشان تفتان باشند. علاوه بر آن با توجه به جهت‌گیری ساختارهای
تکتونیکی بستر آتشفشان مانند چین‌ها و گسل‌ها همچنین اطلاعات به دست‌آمده از زلزله‌ها و GPS همگی جهت
فشارش منطقه‌ای را شمال شرق- جنوب غرب نشان می‌دهند درصداتی که اطلاعات به دست‌آمده از ایجاد آتشفشان در
این مطالعه شامل مطالعه روند دایک‌ها. روند دهانه‌ای قدیمی به جدید و روند چشم‌ها (که می‌توانند شاهدی بر
گسل‌هایی باشد که در انتهای آن شکل گرفته‌اند) همگی یک تشکیل کششی با امتداد شمال شرق- جنوب غرب را نشان
می‌دهند (شکل 7) که باعث شکل گیری دایک‌ها و جهت‌گیری دهانه‌ها در انتهای امتداد شدن و فراوردهای بعید مانند
فوروردی زجنی دهانه انجرک نیز از این اکتو تبعیت کرده‌اند. با توجه به این اطلاعات نشان می‌دهد در
جهت شمال شرق- جنوب غرب تقسیم می‌شوند. اطلاعات به دست‌آمده نشان می‌دهند تن دو محفظ کششی محلی و منطقه‌ای
در امتداد هم ویل در خلاف جهت هم هستند. با توجه به مدل‌های تجریبی و مطالعات میدانی (Tibaldi et al. 2008) و پیشروی می‌گردد که این سیستم کشش محیط خود ناشی از سیستم فشارش ناحیه‌ای با نفوذ ماگما در امتداد گسل‌های تراسی و ایجاد یک منطقه کششی محلی در امتداد دهانه‌های قدیمی تا جدید می‌باشد (شکل 7).

شکل 7. مدل تکنویکی که نشان دهنده نقش تنش‌ها در شکل گیری آتشفشان تفتان است. نقشه ساختاری کلی منطقه با تغییرات از مورد مطالعه به همراه مقاطع عرضی (ب تغییرات از معین وزیری و امین سیحانی، 1357) که سیستم حرکت مواد ماکمی را در امتداد گسل‌های تراسی نشان می‌دهد. پیمان‌های آبی رنگ نشان دهنده کششی محلی در امتداد مخروط و پیمان‌های فرمزنه‌ای نشان دهنده چهت فشارش.

نتیجه‌گیری
گسل‌های تراسی با امتداد شمال غرب – جنوب شرق در بهنه‌زمان در سیستم فضای مناسب را چهت صعود ماکما به سمت بالا (در یک محیط فشاری) فراهم نموده و باعث شکل‌گیری آتشفشان تفتان در این امتداد شده است. توسعة گسل‌های تراسی و تغییر شیب آنها در بنای آتشفشان باعث شکل‌گیری یک فضای کششی در امتداد شمال غرب – جنوب شرق (به موازات فشارش ناخیه‌ای) شده و باعث شکل‌گیری ساختارهای کششی مانند دایکها و
ftarozesh zangi shahde ast. ba tojeh be roo.d dehanehaye qadimih va jomaleet shidan aneha az shimal gurb be jonub shragh va movel pishnehadi (korteel kandeha roon debaneha) movineh farooneh budii atashfaneshtun farooneh ra dar qemmot jonub shraqi dehaneh fual fele pishnehad dad.

تقدير و تشكیر
نویسندگان این مقاله از تمام عرضی‌که ما را در عملیات صحرايی هرم‌های کردند تشكیر و قدردانی می‌کنند. این تحقیق از پشتیبانی مالی و معنوی دانشگاه سیستان و بلجستان بهره برد است.

منابع

بیانگر حبیب، عباس مرادی (1368)، جلوه‌شناسی، زدن‌و‌گذاری و نحوه تشکیل آتش‌فانی‌های فکری در اندازه‌های کاربردی و بلجستان. پایه‌نامه دکتری. 234 صفحه.

معین ورزی حسینی، امین سیحانی ابراهیمی؛ (1357)، آتش‌فانی‌های، انتشارات دانشگاه تربیت معلم 44 صفحه.

Clemens J.C., Mawer-C.K., (1992), Granitic Magma (Transport by Fracture Propagation). Tectonophysics 204-339-360
Galland, O., J. de Bremond d’Ars, P. R. Cobbold, and Hallot, E., (2003), Physical models of magmatic intrusion during thrusting. Terra Nova, 15, 405–409.
Galland, O., P. R. Cobbold, J. de Bremond d’Ars, and E. Hallot., (2007), Rise and emplacement of magma during horizontal shortening of the brittle crust: Insights from experimental modeling. J. Geophys.
Galland, O., de Bremond d’Ars, J., Cobbold, P.R., Hallot, E., (2003), Physical models of magmatic intrusion during thrusting. Terra Nova 1–5. DOI:10.1046/j.1365-3121.2003.00512.x.


Research Article

Role of tectonics in the evolution of Taftan Volcano, SE Iran

Abdolreza Partabian*, Mahdieh Fatahi Moghadam², Aliasghar Moridi³, Habib Biabangard⁴

Received: 06-06-2019 Revised: 26-09-2019 Accepted: 16-11-2019

Abstract

The study of factors that control volcanoes can help analyze the risk of triggering an eruption. Taftan is a Quaternary volcano of southeast Iran, formed as the result of subduction of Oman oceanic lithosphere underneath the continental Iranian plate that emplaced onto compressional tectonic setting such as strongly folded and faulted Eocene flysch and Cretaceous ophiolites. This volcano has several centers that are directed along a northeast to southwest from old to new. In order to investigate the role of the tectonic regime to evolution of Taftan volcano, structural elements such as Dikes, Fractures, crater opening of Anjerk amphitheater, the direction of centers and direction of springs have been studied. The resulting data of these elements represent a northeast-southwest directed extensional stress in the Taftan body which has created an extension area in the northwest-southeast direction. But earthquakes and structural trends of pre volcanic rocks underlying Taftan show a maximum regional compressional northeast-southwest striking. Recent relevant data such as structural analysis, analog modeling, field data demonstrating that volcanism can occur in compressional tectonic settings associated with thrust faulting. In other words magma can transport beneath the volcano to the surface along the thrust faults. Based on these data we proposed a model that demonstrates the substrate thrust fault (as magma path) splits into two faults within the volcano: A shallow-dipping one, with reverse movement, propagates towards the volcano flank, and a steeper-dipping one, with normal movement, propagates upwards and causes northeast-southwest extensional area along the centers parallel to thrust fault of substrata. The suggested model in this study proposes a next eruption point in the southeast of the currently active point.

Keywords: Volcano, Compressional tectonics, Reverse faults, Dike, Hazard.

* - Assistant professor of tectonics, Faculty of Science, University of Sistan and Baluchestan, Iran.
² - MS of tectonics, Faculty of Science, University of Sistan and Baluchestan, Iran.
³ - Assistant professor of tectonics, Faculty of Science, University of Sistan and Baluchestan, Iran.
⁴ - Assistant professor of petrology, Faculty of Science, University of Sistan and Baluchestan, Iran.

Email: partabian_reza@science.usb.ac.ir
References

References (in Persian)

References (in English)
Clemens J.C., Mawer, C.K., (1992), Granitic magma transport by fractures. Tectonophysics 204:339-360
Galland, O., de Bremond d’Ars, J., Cobbold, P.R., Hallot, E., (2003), Physical models of magmatic intrusion during thrusting. Terra Nova, 15, 405–409.
Galland, O., P. R. Cobbold, J. de Bremond d’Ars, and E. Hallot., (2007), Rise and emplacement of magma during horizontal shortening of the brittle crust: Insights from experimental modeling. J. Geophys.
Galland, O., de Bremond d’Ars, J., Cobbold, P.R., Hallot, E., (2003), Physical models of magmatic intrusion during thrusting. Terra Nova 1–5. DOI:10.1046/j.1365-3121.2003.00512.x.