ارزیابی تغییر موقعیت رودباد جنب حاره‌ای مستقر بر روی ایران و آینده‌نگری آن

GFDL-CM3 و CanESM2 بر اساس دو مدل آقیمی 2

عبدالعظیم قانقرم

چکیده

قرار داده‌ای ایران در عرض‌های جغرافیایی بین ۳۵ تا ۴۰ درجه نسبت به سه شناخته است که در طی سال‌های جنب حاره‌ای‌های عمایی برای کنترل سامان‌های رطوبتی در سطح‌های ایران شدیده بوده‌اند. بنابراین هدف از این تحقیق بررسی جابجایی موقعیت رودباد جنب حاره‌ای و تغییر‌پذیری آن بر روی ایران می‌باشد. این تحقیق به منظور دستیابی به هدف پژوهش، در محدوده‌ای متشکل از ۲۰ درجه طول شرقی و ۳۰ درجه طول غربی در نیم‌کره شمالی داده سرعت باد محلی در سطوح بین ۱۰۰۰ تا ۱۰ هکتارسکال از مرکز سیی مطلوب جوی و اقیانوسی ایالت متعدد (NOAA) و همجین خروجی مدل‌های گردشی شامل RCP8.5 و RCP4.5 از مرکز GFDL-CM3 و CanESM2 برای دوره‌های تاریخی 1948 تا 2005 و دوره‌های آینده آنی 2006 تا 2۱۰۰ در دو سناریویی RCP8.5 و RCP4.5 همین این دوباره تغییر‌های اقیمی IPCC در فضای اسلامی سرعت رودباد نشان می‌دهد که تغییر‌های موقعیت رودباد جنب حاره بر روی ایران و نواحی شرق آن از روند تغییرهای افراشته معنادار پیروی می‌کنند. در حالی که در غرب ایران تغییرهای سرعت رودباد در سه سناریویی GFDL-CM3 و CanESM2 مشخص می‌کند که نسبت به دوره پایه در هر دو سناریو و همچنین آینده نزدیک در دو موقعیت آن به شمال جابجا شده و از این می‌پنداید که رودباد جنبحارهای محلهای گردشی سیستم‌های رطوبتی سطحی و آبیر. 1948 و 2005

Email: a.ghangherme@gu.ac.ir
مقدمه

رودبادها نوز روبه‌یکی از سری‌ترین بادها در داخل استان‌های که پایدارترین آن در سطوح فوقانی لایه تروپوز در مجاورت‌های قبیل جنگ جهانی و ظاهراتی مرتبط سلول‌های بلندبوده ولی به تخمین در بالای سطح جنگ جهانی واقع شده است که با استفاده محدود داده‌های سطح قطبی نامیده می‌باشد. این دو درونی نوی رودباد در بالا در زمینه درودباد قطبی جهانی جوی خصوصی مانند سواحل غربی از دریاها مانند دریای عرب شکل می‌گیرند که به آنها نیز رودبادها سطح بادیده ابر اطلاعی می‌شوند.

رودباد جنگ‌هایی تحت تأثیر نیروی کوربولس ایجاد می‌شود و اقلیم مناطق زیرین را از طریق تقویت یا پاسخگویی سامانه‌های آب و هوایی مهاجر که در بالای بادهای غربی متاثر می‌کند. به‌طور کلی برای این مکان‌ها خاص سپتیمها در منطقه عربی، هوا گرمی دارد، سرد که دو شاخه تقسیم می‌گردد که هر شاخه به سمت یکی از قطع قطب‌ها حرکت می‌کند. اما در نیمه‌غربی شما می‌باشد. در طی دهه‌های اخیر، موقعیت و قدرت رودباد جنگ‌های محوری که در میان بین‌های اصلی سلول هیدروفلور تغییرهای را نشان می‌دهد. به‌طوری که این عامل باعث گردیده پژوهشگران مختلفی از سری‌رسان‌های جنگ جهانی از دیدگاه‌های مختلفی از ارزیابی مانند آن، هم‌گزاری به تغییرهای زمین و مکانیکی رودباد جنگ‌هایی بروی و هواپی توجه نمایند. قرارگیری آنان در عرض‌های جغرافیایی بین ۸۲ تا ۱۰۲ درجه نیمه‌غربی شما سبب شده است که در طی سال‌های جنگ‌هایی که این رودباد در موقعیت‌های ایران قرار می‌گیرد به دلیل قدرت زیاد آن باعث شده سامانه‌های تغییرهای شما در حالت درونی شده است. در سال‌های گذشته گزارش شده است که موقعیت سطح در نیم‌غربی شما در جنگ‌هایی است. بنا بر این نتایج مطالعاتی این دلیل نشان می‌دهد که جنگ‌هایی در منطقه ایران، تغییرهای زمین و مکانیکی رودباد در دلیل موقعیت آن در درون‌های آن مورد ارزیابی قرار گرفته است. به‌طورکلی، این نتایج قرار گرفته است که تغییرهای مکانیکی رودباد در ناحیه مختلف انجام گرفته است.

به‌عنوان مثال از کارهای آگاهان در مورد رودباد جنگ‌هایی می‌توان به کاری که در سال ۱۹۵۱ اشرافی نمود. این پژوهشگران در کاری به مطالعه نشان‌دادند که جنگ‌هایی در طراحی دهه‌های زمین ویژه‌ای از گرددیسی بازگشت در کار خود سطح ۲۰۰ میلی باری را ابتکار به روز تغییرهای رودباد در ماه‌های زمین ویژه مطالعه نمود. در مقاله‌های ریتر و ویتنی (۱۹۶۵)، تغییرهای رودباد در درون‌های جنگ‌هایی و جنگ‌های قطبی را مورد مطالعه و واکاوی قرار دادند. در این سال و همکاران (۲۰۰۶)، تغییرهای این قاره در درون‌های جنگ‌هایی و جنگ‌های قطبی را مورد مطالعه قرار داده و در آن بین به این نتیجه رسیدند که رودباد جنگ‌هایی بروی هر دو نیم‌صورت و با توجه به چنین نتایجی تغییرهای زمین ویژه‌ای تا حدودی به‌ندازه یک درجه به سمت قطب جنوبی شده است. این‌ها ۵ و ۶، رودبادها زمین‌خاکی جت

1 - Krishnamurti
2 - Reiter
3 - Whitney
4 - Fu
5 - Strong
6 - Davis
استریم را در سرتابن نیم‌کره شمالی برای یک دوره آماری 1958 تا 2007 مورد ارزیابی قرار دادند. نتایج کار آنها نشان دهنده ثبات هسته رودیاب جنوب‌حاره‌ای بر روی گرب و مرکز اقیانوس آرام می‌باشد. اما در یکی از حالات، تغییرات در طبقه‌بندی خارشی در مناطق مختلف اقیانوس آرام و اعوام‌اند در حال جابجاىی به‌سوی قطب می‌باشد. فریسون و همکارانش (2002)، سه سلول هدلی را مورد مطالعه قرار دادند و نشان دادند که این نظریه به‌صورت هندسی و به‌طور تجربی هنوز بسیار سخت است. همکارش (1980)، مطالعه‌ای درباره تغییر در طبقه‌بندی سلول هدلی حتی بدون وجود ایجاده‌ای که به‌طور کلی در پهناههای سلولی به‌طور مداوم به‌وجود می‌آید. این نتیجه را در سال 1979 به‌طور رسمی مشاهده‌های سلول هدلی از روش آنالیز داد.

این نتیجه را در سال 1979 به‌طور رسمی مشاهده‌های سلول هدلی از روش آنالیز داد.

به‌طور کلی، تغییرات در طبقه‌بندی سلول هدلی به‌صورت هندسی و به‌طور تجربی هنوز بسیار سخت است. همکارش (1980)، مطالعه‌ای درباره تغییر در طبقه‌بندی سلول هدلی حتی بدون وجود ایجاده‌ای که به‌طور کلی در پهناههای سلولی به‌طور مداوم به‌وجود می‌آید. این نتیجه را در سال 1979 به‌طور رسمی مشاهده‌های سلول هدلی از روش آنالیز داد.

به‌طور کلی، تغییرات در طبقه‌بندی سلول هدلی به‌صورت هندسی و به‌طور تجربی هنوز بسیار سخت است. همکارش (1980)، مطالعه‌ای درباره تغییر در طبقه‌بندی سلول هدلی حتی بدون وجود ایجاده‌ای که به‌طور کلی در پهناههای سلولی به‌طور مداوم به‌وجود می‌آید. این نتیجه را در سال 1979 به‌طور رسمی مشاهده‌های سلول هدلی از روش آنالیز داد.

به‌طور کلی، تغییرات در طبقه‌بندی سلول هدلی به‌صورت هندسی و به‌طور تجربی هنوز بسیار سخت است. همکارش (1980)، مطالعه‌ای درباره تغییر در طبقه‌بندی سلول هدلی حتی بدون وجود ایجاده‌ای که به‌طور کلی در پهناههای سلولی به‌طور مداوم به‌وجود می‌آید. این نتیجه را در سال 1979 به‌طور رسمی مشاهده‌های سلول هدلی از روش آنالیز داد.

به‌طور کلی، تغییرات در طبقه‌بندی سلول هدلی به‌صورت هندسی و به‌طور تجربی هنوز بسیار سخت است. همکارش (1980)، مطالعه‌ای درباره تغییر در طبقه‌بندی سلول هدلی حتی بدون وجود ایجاده‌ای که به‌طور کلی در پهناههای سلولی به‌طور مداوم به‌وجود می‌آید. این نتیجه را در سال 1979 به‌طور رسمی مشاهده‌های سلول هدلی از روش آنالیز داد.
در مقابل رودباد بیشتر قطبی تقویت گردیده است. هودسن (2012)، نیز برای شناسایی جابجایی رودبادهای عرض-های میانه در نیمکره شمالی و جنوبی از آزون جوی استفاده نمودند و برای دوره 1979 تا 2010 نشان داد که حرکت قطبی سوی در هر دو نیمکره تغییر معنی داری را نشان می‌دهد که این موضوع تغییر معنی داری را در الگوهای آب و هواپی ایکس هیدرولوژی سبب شده است. هودسون و همکارانش (2013)، با مطالعه توسه قطبی رودباد هدایت با استفاده از گزارش پنجم IPCC در دو حالت تاثیر گازهای گلخانه‌ای و تأمین نیروهای در گیر انرژی برای دوره تاریخی به این نتیجه رسیدند که در حالی که در حرکت اول در هر 10 سال سول سیلی در محدوده ± 0.06 درجه و در حالت دوم 17 ± 6 گسترش یابد کردند. راجندران و همکارانش (2008) نشان دادند که تغییر در وضعیت هدایت هدایت مسی تایبیستی در واکنش به گرمایی جهانی به شکلی شن جزین موسی بزرگ‌میاس (به‌خصوص رودباد سطح پایین) شده است. روزفر و همکارانش (2005). نیز ضعیف شدن روند جهت استریم‌های پایین را در شبه‌جزیره هندوستان نشان دادند. به‌طوری که در دوره قطبی سیل (قوی‌سیل) موسی هسته رودباد پایین از روز به‌جزیره هند بین 12.5 درجه شمالی جابجا می‌شود. در دوره ضعیف شدن موسی، رودباد در موقعیت 2.2 درجه شمالي واقع می‌شود. کریشنان و همکارانش (2012) نشان دادند که موسی‌های آسیا جنوبی خاکی و پایین‌ترین، در منطقه تایبیستی رودباد، سیل هدایت در حال واقع‌گونی است و همچنین ورود موسی‌های جنوب‌غربی (رودبادهای سطح پایین) در طی 50 سال گذشته ضعیف شده است. ضعیف شدن روند گردش موسی‌ها با کاهش فراوانی ریزش بارش‌های روزانه مسیر تان سیگنی همبستگی معنی‌داری را نشان می‌دهد. بایش ف. و همکارانش (2015) تغییر‌های قطبی جت اقیانوسی جنوب‌شرقی را در طول 1950 تا 2009 در رودبادهای نمودند و به این نتیجه نائل شدن که سردردگی گریز نسبت به روی عرض‌های میانه در آسیا کشف می‌شود در دوره‌های گرم کره زمین که در دوره‌های گرم شدن در کره زمین به‌هنجاره‌های شناخته‌شده روند تغییر مسیر خود را تخریب می‌کند. مطالعه نشان می‌دهد که در سردردگی انحراف در آسیا به‌طور مشابه، مناطق آسیا ناشی از فعالیت‌های آتشفشانی در تولید ریزگردها (درذ سولیکان) است. یانگ و همکارانش (2004)، مشخص کردن که جریان رودباد شرق آسیا با یک نگاه ارتباطی از راه دور در منطقه آسیا-اقیانوس آرام-آمریکا و با دو نگاه بین‌المللی از آسیا و اقیانوس ارام واقع کردن برقرار کرده است. استریم‌های آقیانوسی (2008)، الگوی تغییر‌پذیری فورتر و موقعیت هسته‌های رودبادهای منطقه اعتدال در ارتباط با شاخص نوسان قطبی (AOI) مطالعه نمودند و به این نتیجه رسیدند که در مناطق غیر حارهای الگوی عمدی تغییر‌پذیری در فراوانی هسته رودبادهای با شاخص نوسان قطبی همبستگی دارد و به‌عنوان یک شاخص در پیکرندی اصل امواج رودبادهای زمستانی آشکار می‌شود. لیو و همکارانش (2009)، علت یافتن درک حرکت رودبادهای نمودند. در مطالعه یافتن با دمای سطح دریاها که نشان می‌دهد در محدوده عمومی انفس دارند و توزیع یافته دریاها باعث تغییر دهی می‌شود. در این تحقیق، مدل تغییرات در محیط فصولی و فعالیت‌های ناسی، مدل مهم دیگری نیز به عنوان فراوانی ویژگی‌های تروریستی در منطقه جغرافیایی حدود، بایش و همکارانش (2013)، واکنش رودبادهای

1 - Hudson
2 - Abish
3 - Yang
4 - Barnes
غیره‌های میانه و تغییر‌پذیری آنها را نسبت به افزایش گازهای گلخانه‌ای در ارتباط با گزارش پنج‌میلی‌متر (CMIP5) مورد مطالعه قرار دادن و بیان کردن که تمامی روداده‌ها با تغییرهای اقیمی به‌طور گسترده‌ای بین دو بسته بسیار تفاوت‌دار و انتخابی قرن بیست و دو کمک سال‌ها بوده و مهم‌ترین ابزار تغییرهای آینده در سرتاسر روداباد شدید (Matsumo-Gill response) گیل، هدف‌های و افزایش خشکی جهانی را ناشی از گرماشی دی اکسید کربن مطالعه نمودند و سگال‌های فوق از منابع‌های توقیف، کننده و تعیین‌گیرنده سال‌های ناشی از گرماشی دی اکسید کربن تعدادی بسیار کردن. این تغییرهای به‌طور گسترده‌ای در کاهش سطح‌پوش‌های مختلفی از گرماشی و افزایش بازی‌های خشکی به‌وسیله در منطقه جنوبهای آنها و حاصل را به‌طور می‌سوزد. این همکاری‌ها (2015) تهیه مدلی در تغییرهای روداباد و ارتباط آن با اقلیم منطقه قطبی با CGCMs استفاده از مدل گرددی CMIP5 را مطالعه نمودند و یک طبقه‌بندی مشخص‌کردن که رودابادی عرضه‌های میانه‌های بازی‌ها گرماشی منطقه قطبی به‌سوی منطقه قطبی افزایش می‌کند. در نهایت، این کمک به شدن گرماشی به‌سوی استوشیم‌های موش. بلمجری و همکارانش (2015) با استفاده از روداباد مستقر در گسترش گرماشی در نیم‌کره شمایی شناخت‌های با سیر زنی این‌جا داد که بن‌اساس شاخص‌های فوق در الگوهای گسترش‌های در تغییر‌پذیری دما و بازیابی در انتقال گرمایی اکوسیستم و موضع‌های اقتصادی- اجتماعی با الگوهای سطحی فوتوانی اتصافی‌های واقع شوند. عالم رازه و همکارانش (1396) با استفاده ساختار بدن می‌تواند این شکل به‌ورودی گرماشی چشای ناشی نمودن که کاهش داده در قطعات آنتی‌بیوتهای 1830 متر مطلق ناگهانی در سال 1817 تغییرهای قدرت و پیش نمودن را به گوشای که و همکاری‌ها (2013)، تغییرهای قدرت و پیش نمودن را از اواخر قرن نوزدهم از اوایل قرن بیست و دو طبیعی بوده است، در حالی که بیشترین تغییر‌پذیری در دهه‌های اخیر اتفاق افتاده است. ارزیابی نویسندگان این پژوهش، این یافتگاه‌ها، این پرسش را مطرح می‌کند که این تغییرهای اخیر در گرماشی هدایی به‌طور عمده به گرم شدن سطح‌ها به نوبت طولانی‌مدت گرماشی هدایی مربوط می‌شود که اغلب طولانی‌تر از مطالعه‌های قبلی است. چنلی و همکارانش (2017) دوره تاریخی و آینده روداباد جنوب حاصل را در طول زمان‌بندی نموده که افزایش کمک سال‌ها با استفاده از مدل‌های CMIP5 مطالعه نمودند و مشخص نمودن که قدرت و موقعیت آن‌ها حاصل یک طبقه‌بندی به‌طوری‌که بر اساس سال‌های 5.5 و RCP8.5 به ترتیب افزایش سرعت روداباد 2.5 و 5.5 متر در تایم‌های با جابجاً موقعیت آن 6، 4، 3 درجه به‌سوی قطب تا پایان

1 - William
2 - Belmecheri
قرن افتخار حوزه افتخار. تروت ۱ و همکارانش (۲۰۱۸)، تغییرات در رودبندی اقلیمی شالی در دوره اخیر با سه قرن پیش مورد مقایسه قرار دادند، به طوری که افزایش اخیر رخ داده‌ها حتی در عصر‌های میانه با آن‌ریزی رودبندی در نیک‌گره شالی مربوط است. آنها در این تحقیق از هنگامی که شال‌سوی رودبندی اقلیمی شالی موجب امواج گرمایی و خشکسالی‌ها در شمال غرب اروپا و جنوب شرق اروپا شده است، از نتیجه‌های این تحقیق نشان دادند که در قرن ۲۰ تغییراتی سالمه جه استریم‌های نصفاله‌های افزایش یافته است و بسیاری از این‌ها در دوی رودبند و شبه‌پایداری دانه نوسان آن به علل خاص دیانده‌ها بالقوه برای گرمایش قطعی با تأثیر به‌هوا عرض‌های میانه شده است. قاتل‌ترین همکارش (۱۳۹۴)، با استخدام نقشه‌ریزی در کار تاریک و نوازی به‌روی ایران به‌هوا تعیین نشده‌ای که رودبند جنب حاره مستقر در روز جهانی در مقدار و تعداد روزهای بارش نقشه ایجاد کرده است. روند جابجایی رودبند و پرورش جنب حاره بر فراز خاوری‌ها و رابطه آن با یک اقلیم ایران را مورد بررسی قرار دادند و نشان دادند که شکست و چگونگی محور رخداد سرعت رودبند از نظر مداری، نصفاله‌ها و ارتقاء وقوع آن در تحلیل سایر سامانه‌های اقلیمی نقش بسزایی دارند. کوتاه بودن نهایی دو نیمه در غرب کشور، نشان از تغییر در استریم‌های بین سامانه‌ها دارد. برخی از مطالعه‌ها روزی نقش مهم‌ترین رودبند جنب حاره و جنبه دینی در سیستم زایی سرمایه‌زایان زیستی موجود نواحی سیرالاوتی، قسمت مرکزی دریای مدیترانه و شمال آفریقا تمایل کردند (ویتنی ۱۹۷۷). همکاران ۱۹۸۷، حکیم، ۱۹۹۲، بری زیراکس، ۱۹۹۷، کابلان و همکاران ۱۹۹۸، بری زیراکس و همکاران ۲۰۰۳، کابلان و همکاران ۱۹۸۷، مبارک حسنی و همکاران ۲۰۱۲، دیوید لورنژ (۲۰۱۴) به‌طور جهانی سپاری از مطالعه‌های دیگر نیز به‌روی تغییر‌های موقعیت و شدت رودبند جنب حاره و تأثیر آن بر‌طرف‌های عرض‌های میانه (ناتورموزه ۱۹۹۲) ظاهراً مشابه این مطالعه است. دروغ این مطالعه به‌روی تغییرات گردش جوی (رئیس و همکاران ۲۰۱۵) و بهبود زمین‌شناسی در داخل کشور برای جنب حاره انجام پذیرفت است. به‌عنوان نمونه در کاری فرضی زمین‌شناسی این تحقیق بررسی تغییراتی سایری سایری؛ از جمله تغییرات در نواحی غربی ایران و در اکثر قرارداد جدید، با توجه به پیشنهاد تحقیق‌های انجام‌شده هدف از انجام این تحقیق بررسی تغییراتی موقعیت و سرعت هسته رودبند جنب حاره‌ای بر روی ایران و آینده‌گری آن به‌عنوان عامل مهم تعیین کننده‌ای اقلیمی ایران می‌باشد.

داده‌ها و روش‌ها

در این تحقیق به‌منظور دستیابی به‌هدف پذیرش سرعت با مداری در محدوده بین ۳۰ تا ۸۰ درجه طول شرقی در نیم‌کره شمالي و در ترازهای بین ۱۰۰۰ تا ۱۰ هکتوباسکال انتخاب شدند. این داده شامل داده‌های دوباره‌سازی شده

1 - Trouet
2 - Whitney
3 - Uccellini
4 - Hakim
5 - Kaplan
6 - Nakamura
7 - Wei
8 - Ruti
الف- ارزیابی کارایی مدل‌های گردشی

به‌منظور ارزیابی رویارویی شیب‌سازی، نهایتاً توسط دو مدل 2 و CanESM2 و GFDL-CM3 و CanESM2 شرکت آن از معیارهای شامل ضریب کارایی نش-ستاکفی (NSE) (قاندره و همکاران، 2018)، ریشه دوم میانگین ضریب سنجش (RMSE)، ضریب سنجش (R2) و شاخص توافق ویلموت (d) استفاده گردید. در موارد ضریب کارایی نش-ستاکفی، نش-ستاکفی سنجش‌های مدل داده‌های دوباره بی‌سابزی شده و شرکت شده‌اند.

\[
NSE = 1 - \frac{\sum_{i=1}^{n} (OBS_i - MODEL_i)^2}{\sum_{i=1}^{n} (OBS_i - \overline{OBS})^2}
\]

اگر ضریب نش-ستاکفی، میانگین 1 باشد توافق کامل مدل را نشان می‌دهد. در مقابل اگر به صفر برسد این مدلی کارایی مناسبی را ندارد. بنابراین هرچه میزان ضریب به یک نزدیک شود حاکی از کارایی مدل شیب‌سازی می‌باشد.

رسیب دوم میانگین مربعات خطای توافق معیاری چهه مقایسه مقدار پرورش شده از مدل با مقدار مشاهداتی می‌باشد. در این مقاله با توجه به دامنه تغییراتی که سرعت باید با استفاده از دانه‌ها حداکثر و حداقل ریشه دوم میانگین مربعات خطای توافق معیاری بدون بعد (NRMSE) تبدیل شد. در معادله‌های MAX و N به ترتیب حداکثر و حداقل در دو برد پرورش شده‌اند.

\[
RMSE = \sqrt{\frac{\sum(OBS-MODEL)^2}{N}}
\]

\[
NRMSE = \frac{RMSE}{MAX_{obs}-MIN_{obs}}
\]

ضریب سنجش، یکی از مهم‌ترین معیارهای ارزیابی عملکرد و رابطه بین داده‌های مشاهداتی و شیب‌سازی می‌باشد. هرچه قدر به مقدار 1 نزدیک شود، توافق بین داده‌ها و مقدار سنجش این نیز عدم توافق را نشان می‌دهد که با توجه به اینکه مقدار آن در این نوع ترتیب پرسون می‌باشد، بنابراین برای داده‌ها و استاندارد مدل که شرکت دوباره 1.5 درصد مدل 2005 تا 2018 متوالی ماه است، استاندارد معیاری دارند که در صفحه معیاری 4.99 می‌باشد.
یافته‌های تحقیق

بررسی رودباد جنبه‌های مستقر بر روی ایران و نواحی غربی و شرقی آن نشان می‌دهد که بیشترین سرعت رودباد جنب‌های مستقر بر روی ایران در موقعیت جنوبی و کمترین آن در موقعیت شمالی اتفاق می‌افتد. یکی از ویژگی‌های قابل‌توجه این رودباد بر روی ایران و نواحی اطراف آن بعین شکل‌های مختلف علوفه بر تغییرها در سرعت، در موقعیت‌های مختلف نیز قرار می‌گیرند که حاکی از دو حالت پایداری و انتقالی می‌باشد. به‌عبارت دیگر ماهیان در سطح دریای تنگه دسیمیر روزانه در موقعیت‌های مانند رودباد به همراه با هماهنگی به‌سرعت دو ماه یا نیز در شمال تین ماهیان در شمال در حالی که برای خودش این جنب‌های مستقر بر روی ایران در موقعیت رودباد به همراه کاهش شدید سرعت به‌سرعت شمال‌گیر می‌شود. همچنین بین اگوستتا دسیمیر نیز در سطح روی‌سر نیز در این موقعیت‌ها به‌سرعت به‌سرعت جنب‌های مستقر بر روی ایران به همراه افزایش سرعت گیرند. بنابراین جنب‌های مستقر شمال‌گیر است، در حالی که پایین‌تر از موقعیت تابستانی تا به زمستانی آن سه ماه طول می‌کشد یا به‌معنای دیگر پاگشت به‌سوزی جنب‌های مستقر کمتر اتفاق می‌افتد. بنابراین مشاهده گر این کتوب به به‌سرعت در ایران را رفتار رودباد جنب‌های مستقر می‌کند. مطالب شکل 2 که در آن نشانه‌های دوباره‌الزامه‌رودباد در تمام طول دوره است، راکم هسته‌های سرعت رودباد در ماه‌های زمستانی هم سرعت کاستن شده است. از طرف دیگر مشخص می‌گردد که در ماه‌های گرم سال علت افزایش سرعت در غرب ایران سرعت رودباد بسیار ضعیف می‌شود. در حالی که بر روی ایران حتی در شمال تین موقعیت خود به‌صورت سریع بسته دیده می‌شود. در این دوره زمان‌ی در شرق ایران سرعت رودباد نسبت به غرب آن قوی‌تر است.
مطابق شکل 3 وضعیت مقاطع رودبند بر روی ایران در فصول مختلف نشان داده شده است که در فصل زمستان مدتی
در ماه‌های دسامبر تا آوریل گسترش عمودی به سطح پایین مطابق با منحنی هم سرعت 10 متر بر ثانیه تا حدود
700 هکتون‌سالکال کشیده می‌شود. در این دوره هسته رودبند یا موردنظر نیز منطبق بر هم می‌باشد، به طوری که
منحنی تراز ارتفاعی آن 195 هکتون‌سالکال و در عرض جغرافیایی 37.5 درجه شمالی قرار دارد. مطابق منحنی‌های
هم سرعت گسترش عمودی رودبند از مرکز به‌سوی پایین دارای کمترین شیب است؛ درحالی که به‌سوی عرض‌های
شمالی و جنوبی هم موج‌های تراز خشک باید بالا یا پایین شیب زیادی ایست. در صفحه بالا شامل ماه‌های می و زوئن با به‌عبارتی
در فاصله بین آوریل تا جولای، هسته رودبند جنب حاره شدیداً به‌سوی عرض‌های شمالی جابجا می‌شود؛ به‌طوری که
در این دوره از گسترش عمودی کاسته و بر اساس تا حدودی گسترش افقت آن افزوده شده است. در مقاطع عمودی
به‌سوی شمال علاوه بر رودبند جنب حاره، هسته گیری از رودبند در موقعیت 45 درجه شمالی در تراز
275 هکتون‌سالکال دیده می‌شود که گواهی عملی از رودبند قطعی است. در فصل تابستان شامل ماه‌های جولای و
اگوست، موقعیت رودبند در شمال ترین عرض جغرافیایی واقع می‌شود که می‌تواند ارتفاع هسته رودبند در تراز
190 هکتون‌سالکال و عرض جغرافیایی آن بین 38/2 تا 44 درجه شمالی در تغییر است. گسترش عمودی آن با منحنی هم
سرعت 10 متر بر ثانیه در تراز بین 500 تا 450 هکتون‌سالکال می‌باشد. در نهایت در فصل انتقالی پایین ماه‌های
سپتامبر، اکتبر و نوامبر با سرعت قابل توجهی به‌سوی عرض‌های جنوبی جابجا می‌شوند؛ البته نسبت به سرعت
جابجایی به‌هیات آن از شدت کمتری پروردار است. در این فصل گسترش شمالی-جنوبی رودبند افزایش یافته است و این
موضوع حاکی از شکل گیری رودبند قطعی در ناحیه شمالی آن می‌باشد، به‌طوری که در ماه نوامبر تا حدودی جدایی
دو هسته دیده می‌شود.
شکل ۲: تغییرهای میانگین ماهانه رودباد جنب هزارهای مستقر بر روی ایران و محدوده پیرامون آن در تراز ۲۰۰ هکتوباسکال (متر بر ثانیه)
الف- تغییرات موقعیت همسته مرکزی رودخانه‌های منطقه‌های ایران و نواحی مجاور

مشخصه‌های عرض جغرافیایی همسته و سطح رودخانه منطقه‌ای از آن است که در قلب زمستان (دسامبر تا آوریل) موقعیت مرکزی آن در 28,795 بهار (می و زوئن) و 18,185 تابستان (زوالی و اگوست) و پاییز (سنتامربار تا نوامبر) 23,797 درجه شمالی قرار می‌گیرد. تغییرات الیاف (CV) 71 ساله موقعیت رودخانه حاکی از آن است که بیشترین آن در ماه‌های آذر و اکتبر به ترتیب معادل 10,644 و 44 درصد و کمترین آن نیز در ماه جولای معادل 5,546 درصد می‌باشد. همچنین تغییرات الیافی آن نیز در بهار و پاییز نسبت به تابستان و زمستان بیشتر است که این موضوع به دلیل انتقالی بودن آن دو فصل باشد.
جدول 1: مشخصات های تغییرپذیری عرض جغرافیایی هسته رودباد مستند بر روی ایران

<table>
<thead>
<tr>
<th>مایه</th>
<th>عرض جغرافیایی به درجه</th>
<th>سرعت به متر در 24 ساعت</th>
<th>CV%</th>
<th>میانگین</th>
<th>CV%</th>
<th>DW</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>زاینده‌رود</td>
<td>2.907</td>
<td>0.133</td>
<td>13.052</td>
<td>53.03</td>
<td>1.986</td>
<td>2.268</td>
<td>0.132**</td>
</tr>
<tr>
<td>قوره</td>
<td>2.434</td>
<td>-0.075</td>
<td>13.620</td>
<td>48.508</td>
<td>2.354</td>
<td>1.074</td>
<td>0.023</td>
</tr>
<tr>
<td>ارگ</td>
<td>2.620</td>
<td>-1.314</td>
<td>12.601</td>
<td>38.136</td>
<td>2.018</td>
<td>0.595</td>
<td>0.003</td>
</tr>
<tr>
<td>می علی‌اصفهان</td>
<td>1.988</td>
<td>0.442</td>
<td>14.206</td>
<td>33.433</td>
<td>1.869</td>
<td>2.071</td>
<td>0.046**</td>
</tr>
<tr>
<td>زوران</td>
<td>2.175</td>
<td>1.878</td>
<td>13.329</td>
<td>32.933</td>
<td>2.093</td>
<td>1.167</td>
<td>0.020</td>
</tr>
<tr>
<td>زرند</td>
<td>2.836</td>
<td>0.612</td>
<td>16.903</td>
<td>32.649</td>
<td>1.849</td>
<td>-0.399</td>
<td>0.002</td>
</tr>
<tr>
<td>اکویست</td>
<td>2.160</td>
<td>0.912</td>
<td>18.981</td>
<td>30.845</td>
<td>2.093</td>
<td>0.173</td>
<td>0.000</td>
</tr>
<tr>
<td>سیستان و بلوچستان</td>
<td>2.289</td>
<td>-1.578</td>
<td>16.229</td>
<td>31.311</td>
<td>1.969</td>
<td>0.875</td>
<td>0.007</td>
</tr>
<tr>
<td>گهار</td>
<td>2.043</td>
<td>0.815</td>
<td>13.502</td>
<td>33.467</td>
<td>1.962</td>
<td>-2.619</td>
<td>0.054**</td>
</tr>
<tr>
<td>ایلام</td>
<td>2.477</td>
<td>-0.111</td>
<td>12.979</td>
<td>38.399</td>
<td>1.834</td>
<td>1.598</td>
<td>0.032</td>
</tr>
<tr>
<td>سیستان</td>
<td>2.354</td>
<td>1.918</td>
<td>13.905</td>
<td>45.021</td>
<td>1.681</td>
<td>2.798</td>
<td>0.122**</td>
</tr>
<tr>
<td>زنجان</td>
<td>1.910</td>
<td>-0.517</td>
<td>5.971</td>
<td>47.787</td>
<td>1.944</td>
<td>1.434</td>
<td>0.128**</td>
</tr>
<tr>
<td>خراسان</td>
<td>1.905</td>
<td>1.160</td>
<td>9.475</td>
<td>33.183</td>
<td>2.073</td>
<td>1.619</td>
<td>0.054**</td>
</tr>
<tr>
<td>همدان</td>
<td>1.698</td>
<td>0.762</td>
<td>13.988</td>
<td>31.747</td>
<td>2.117</td>
<td>-0.113</td>
<td>0.000</td>
</tr>
<tr>
<td>یزد</td>
<td>2.419</td>
<td>-0.291</td>
<td>9.247</td>
<td>34.392</td>
<td>2.259</td>
<td>-0.049</td>
<td>0.000</td>
</tr>
<tr>
<td>قم</td>
<td>2.210</td>
<td>0.032</td>
<td>4.893</td>
<td>39.331</td>
<td>2.111</td>
<td>0.835</td>
<td>0.050**</td>
</tr>
<tr>
<td>سالانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

به‌منظور مشخص نمودن روند تغییرها از روش پیرسون استفاده شد. به‌طوری که از جدول 1 دیده می‌شود میانگین دارترین روند تغییرها بر مبنای 5 درصد خطای در ماده‌های زاینده‌رود، می‌کند و دسی‌متر افقی این اعداد است. این اندازه 2.419 درجه به موضع‌گیری جنوبی تر جابجا شده است. در حالی که در ماده‌های زوران، زرند و ایلام درصد خطای موجب می‌شود. اما از نظر فصلی، زنجان و ظریف دارای روند افزایشی معنی‌دار است. به‌طوری که در فصل زمستان، میانگین خطای رودباد 1.434 درجه به عرض‌های شمالی جابجا شده است. این موضوع از نظر سالانه نیز از جابجایی معنی‌دار پیرو می‌کند، به‌طوری که در طی 71 سال 382.0 درجه به موقعیت شمالي‌تری جابجا گشته است. شکل شماره 4 تغییرهای زمانی برای دوره 1948 تا 2018 برای فصول چهارگانه نشان می‌دهد. به‌طوری که دیده می‌شود علاوه بر روند تغییرها در زمستان و بهار می‌تواند در قطعات مال 1941 از شدت بیشتری برجویدار است. به‌طوری که بر اساس شیب این دوره تغییرهای زمستانی در میان گزارش گردیده و 180 درجه جابجا شده است. براساس آزمون تبانش و (DW) به‌طوری که بر اساس نتیجه این مدل رگرسیون نزدیک معنی‌دار می‌باشد به‌طوری که برای دوره 71 ساله دامنه موردентیرش عدم خودپسپشگی با آن افزایش یک گام زمانی دوران بین 1441 تا 1396 می‌باشد. به‌طوری که دیده می‌شود در تمامی ماه‌ها، فصول و سال محسوب‌شده معنی‌دار است. بررسی تغییرهای سرعت رودباد نیز نشان می‌دهد که در فصل زمستان بالاترین سرعت (میانگین مدل 72.67 متر بر ثانیه) و می‌توان 3 متر بر ثانیه (معادل 38.4 متر بر ثانیه) این درحالی که بیشترین تغییرپذیری در زمستان مدل 13.99 درصد و بیشترین آن در زمستان مدل 5.17 درصد است. به‌عبارت دیگر در زمستان با توجه
به افزایش قدرت رودباد از شدت تغییراتی که در دوره گرم سال با توجه به ضعیف شدن رودباد شدت تغییراتی که در گذشته‌ای بین ۷۱ ساله سرعت هسته رودباد حاکی از آن است که بر روی ایران از نوع معنی‌داری پیروی نمی کند.

شکل ۲: نمودار تغییرات قطعی رودباد جنوب غربی ایران

مطابق جدول شماره ۲ مشخص می‌گردد که در غرب ایران میانگین موقعیت دوره زمستانی یک ماه بیشتر از ایران است. به طوری که این دوره بین ماه‌های نوامبر تا آوریل می‌باشد و میانگین موقعیت آن در این دوره معادل ۲۷۷.۳۲۱ درجه شمالی می‌باشد. بیشترین جابجایی رودباد جنوب حاره در غرب ایران در ماه جولای به مقدار ۹۱۵۰ درجه شمالی می‌رسد، در حالی که در ریو ایران در این ماه به ۲۴۳.۶۲۷ درجه نیز می‌رسد. در این محدوده بیشترین تغییرات موقعیت در ماه‌های پاییز و زمستان و اکثر دیگر ماه‌ها (شکل ۵) در کل تغییرات طولانی مدت موقعیت رودباد از رودهای معنی‌داری پیروی نمی کند. در حالی که تغییرات زمستانی رودباد نشان می‌دهد که ماه‌های مارس، آوریل و ماه‌های معنی‌داری پیروی می‌کند. این تغییرها حاکی از آن است که سرعت رودباد در حالت کاهش است، به طوری که در این ماه‌ها در طی ۷۱ سال به ترتیب ۴.۹۳، ۴.۲۰ و ۶.۰۴ متر بر ثانیه کاسته شده است که حاکی از ضعیف شدن رودباد در دوره زمستان و بهار می‌باشد.
جدول 4: مشخصات‌های تغییراتی عرض جغرافیایی هسته‌های رودباد مستقر بر روی غرب ایران

سرعت به متر در ثانیه	عرض جغرافیایی به درجه	میانگین	میانگین	میزان CV	میانگین	میانگین	میزان CV													
DW	تغییر 21 ساله																			
1.927	-0.603	0.001	9.986	55.133	1.966	0.289	0.002	6.258	26.954											
2.137	0.987	0.003	10.104	56.016	1.997	0.679	0.010	7.042	27.500											
2.198	-4.928	0.059**	11.109	52.967	2.161	-0.482	0.006	6.607	27.254											
1.912	-6.302	0.116**	12.381	43.447	1.919	-0.762	0.010	8.227	27.254											
1.643	-6.038	0.134**	13.931	34.48	2.246	0.010	0.007	8.030	28.838											
1.924	-0.463	0.002	9.623	30.439	1.907	0.381	0.004	4.903	34.824											
1.855	-1.022	0.007	12.737	28.589	2.558	-0.798	0.015	4.646	40.915											
1.927	-0.668	0.002	15.602	27.529	2.641	-0.762	0.008	5.931	40.599											
2.348	-0.176	0.000	14.255	28.405	1.654	1.685	0.015	10.804	37.218											
2.168	-1.904	0.017	13.907	30.973	2.128	-0.994	0.007	11.781	29.736											
2.269	-1.153	0.004	13.581	39.369	1.687	0.679	0.008	8.068	27.465											
2.044	1.585	0.007	11.774	47.897	2.088	-0.065	0.000	6.336	27.500											
1.866	-1.736	0.036	5.417	49.138	2.196	0.056	0.000	3.105	27.321											
1.745	-3.521	0.132**	8.019	32.460	2.349	0.137	0.001	4.825	31.831											
1.807	-0.845	0.006	11.504	28.059	2.847	-0.780	0.017	4.227	40.757											
2.362	-1.040	0.009	10.886	29.689	1.723	0.345	0.002	7.715	33.477											
2.371	-1.723	0.088**	4.27	39.604	2.258	-0.021	0.000	2.702	31.339											

بررسی ویژگی‌های رودباد در شرق ایران می‌بایست در 27،234 جدول شماره 3 حاکی از این است که میانگین موقعیت زمستانی آن در 39 ساله مسطر مرگ که دو ساله زمستانی آن شبه موضعیت ایرانی بین ماههای دسامبر تا آوریل است، به‌طوری‌که در مقایسه با نواحی غربی خود در عرض شمالی قرار می‌گیرد، بعضاً دیدنی از غرب به شرق ایران دارای یک روند افزایشی است در حالی که در تابستان موقعیت رودباد در 76.7 درجه شمالی است که به موقعیت ایرانی آن در بخش جنوبی تر قرار دارد، به‌ویژه در موقعیت باشی رودباد نسبت به غرب و شرق خود در موقعیت شمالی قرار دارد. در شرق ایران تغییرات بیشتر به شمار می‌رسد. در ماه‌های اکوست، اکتبر، دسامبر و نوامبر روند معنی‌داری می‌باشد، با این تفاوت که در ماه‌های آگوست و آذر و تاکید کاهشی است (شکل 6). در نهایت بالاترین جابجایی بسیاری می‌باشد، با این تفاوت که در ماه‌های اکوست و اکتبر روند معنی‌داری می‌باشد. از نظر سرعت در این منطقه تغییرات طولانی مدت در ماه‌های زمستان با روند افزایشی معنی‌داری می‌باشد.
جدول ۵: مشخصات تغییرات حرارتی عرض جغرافیایی سه دشت مستقر بر روی شرق ایران

<table>
<thead>
<tr>
<th>ماه</th>
<th>سرعت به متر در ثانیه</th>
<th>عرض جغرافیایی به درجه</th>
<th>میانگین</th>
<th>DW</th>
<th>R²</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ژانویه</td>
<td></td>
<td></td>
<td></td>
<td>2.129</td>
<td>4.103</td>
<td>0.042 **</td>
</tr>
<tr>
<td>فوریه</td>
<td></td>
<td></td>
<td></td>
<td>2.203</td>
<td>0.966</td>
<td>0.002</td>
</tr>
<tr>
<td>مارس</td>
<td></td>
<td></td>
<td></td>
<td>1.922</td>
<td>1.668</td>
<td>0.008</td>
</tr>
<tr>
<td>آوریل</td>
<td></td>
<td></td>
<td></td>
<td>1.885</td>
<td>-2.270</td>
<td>0.021</td>
</tr>
<tr>
<td>می</td>
<td></td>
<td></td>
<td></td>
<td>1.536</td>
<td>-0.090</td>
<td>0.000</td>
</tr>
<tr>
<td>اکتبر</td>
<td></td>
<td></td>
<td></td>
<td>1.902</td>
<td>1.800</td>
<td>0.016</td>
</tr>
<tr>
<td>زوئن</td>
<td></td>
<td></td>
<td></td>
<td>1.726</td>
<td>2.036</td>
<td>0.016</td>
</tr>
<tr>
<td>جولای</td>
<td></td>
<td></td>
<td></td>
<td>1.623</td>
<td>1.071</td>
<td>0.005</td>
</tr>
<tr>
<td>اوتونست</td>
<td></td>
<td></td>
<td></td>
<td>1.826</td>
<td>-0.808</td>
<td>0.003</td>
</tr>
<tr>
<td>سپتامبر</td>
<td></td>
<td></td>
<td></td>
<td>2.146</td>
<td>1.344</td>
<td>0.013</td>
</tr>
<tr>
<td>اکتبر</td>
<td></td>
<td></td>
<td></td>
<td>1.901</td>
<td>1.593</td>
<td>0.011</td>
</tr>
<tr>
<td>نوامبر</td>
<td></td>
<td></td>
<td></td>
<td>1.950</td>
<td>4.858</td>
<td>0.073 **</td>
</tr>
<tr>
<td>دسامبر</td>
<td></td>
<td></td>
<td></td>
<td>1.910</td>
<td>1.865</td>
<td>0.042 **</td>
</tr>
<tr>
<td>ژانویه</td>
<td></td>
<td></td>
<td></td>
<td>1.870</td>
<td>0.855</td>
<td>0.007</td>
</tr>
<tr>
<td>فوریه</td>
<td></td>
<td></td>
<td></td>
<td>1.653</td>
<td>1.554</td>
<td>0.016</td>
</tr>
<tr>
<td>مارس</td>
<td></td>
<td></td>
<td></td>
<td>1.877</td>
<td>0.710</td>
<td>0.008</td>
</tr>
<tr>
<td>اکتبر</td>
<td></td>
<td></td>
<td></td>
<td>1.792</td>
<td>1.355</td>
<td>0.064 **</td>
</tr>
</tbody>
</table>

شکل ۵: نمودار تغییرات حرارتی سه دشت مستقر بر روی شرق ایران

ارزیابی تغییر موقعیت رودباد جنوب حاره ای مستقر بر روی...
ب- استنبجی و ساخته سنجی مدل‌های گردشی

در ادامه به منظور ایجاد نگاره‌گری و ضعیفیت رودهای مستقل بر روی ایران، دوره پایه (داده‌های دوبهاره پاسارگادی شده و داده‌های مدل شده) به دو دوره 1948-1964 و 2005-2018 قسمت شده و بعنوان دوره صحته سنجی مدال‌ها تقسیم شده. چنین بعنوان دوره GFDL-CM3 است. به این مقدار در دوره CanESM2 واسنجی برای دو سناریو rcp45 و rcp85 در مدل اول به ترتیب معادل 0.15 و 0.217 فرد به GFDL-CM3 برای دو سناریو rcp85 و rcp45 در مدل اول به ترتیب معادل 0.390 و 0.402 و همچنین در سناریو rcp85 از مقدار کمتری برخوردار است. از طرف دیگر در دوره صحته سنجی از دوره CanESM2 نیز کمتر می‌باشد. در حالی که انگار می‌رود که مقدار آن بیشتر باشد؛ شاید این موضوع به این دلیل باشد که دوره آماری یک دوره صحته سنجی کمتر است. همچنین بر مبنای ارزیابی شاخص نش سانکلیف، تواناق و بی‌کمک و ضریب تغییر مشخص می‌گردد که در دوره واسنجی مدل GFDL-CM3 مقدار H-260 در مدل کمتر از مدل CanESM2 نیز معادل 0.805 و 0.377 و در مدل rcp8.5 معادل 0.345 و 0.325 و در سناریو rcp4.5 معادل 0.234 و 0.247 و در سناریو rcp8.5 معادل 0.825 و 0.326 می‌باشد. درنتیجه به میانی شاخص تواناق و بی‌کمک اطمینان کاملی بین داده‌های مشاهداتی و مدل شده وجود دارد؛ در حالی که بر اساس شاخص کارایی نش سانکلیف مدل اول از کارایی بالاتری برخوردار است و همچنین در دوره صحته سنجی نیز تا حدی مشارکت دوره واسنجی است. درنتیجه از این ارزیابی مشخص می‌گردد که هر دو مدل در هر دو سناریو از کارایی قابل قبولی پیروی می‌کند.
همچنین برای غرب ایران مشخص می‌گردد که شاخص توانایی ویلموت در تمامی حالت کامل است. اما رشته دوم معیار خطای نرمال‌سازی (NRMSE) نسبت به موقعیت ایران آفرینش یافته است. همچنین ضریب کارایی نش ساختگی و ضریب تعیین کاهش یافته است؛ اما به این معنی نیست که این مدل‌ها در غرب ایران کارایی نداشته باشد. به‌طور کلی ضریب نش ساختگی در دوره‌های جدید در هر دو مدل به‌طور متوسط معادل 0.464، است. درحالیکه در هر دو مدل در سناریوی 5 به‌طور متوسط معادل 0.451 و در سناریوی 4 به‌طور متوسط معادل 0.432 می‌باشد، که حاکی از کارایی بالای مدل است. علاوه بر این در شرق ایران نیز مشخص می‌گردد که شاخص توانایی ویلموت در تمامی حالت کامل است. اما رشته دوم معیار خطای نرمال‌سازی (NRMSE) نسبت به موقعیت ایران و گربه آن کاهش یافته است. همچنین ضریب کارایی نش ساختگی و ضریب تعیین کاهش یافته است؛ بنابراین نسبت به نواحی غربی از کارایی بالاتری برخوردار است. در خشک شرق ایران ضریب کارایی نش ساختگی نشان می‌دهد در دوره CanESM2 در مدل 840 و در دوره GFDL-CM3 معادل 834 و در دوره CanESM2 در سناریوی 5 معادل 834 و در دوره CanESM2 معادل 835 و در سناریوی 5 معادل 850 می‌باشد که در کل حاکی از کارایی بالای مدل است.

جدول 4: ارزیابی توأم‌سازی مدل‌های GFDL-CM3 و CanESM2 در دوره و استیج و صحت سنجی با مدل بر روی ایران، غرب و شرق آن

<table>
<thead>
<tr>
<th>شرق آن</th>
<th>GFDL-CM3</th>
<th>CanESM2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rcp8.5</td>
<td>rcp4.5</td>
</tr>
<tr>
<td>1948-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRMSE</td>
<td>0.412</td>
<td>0.390</td>
</tr>
<tr>
<td>NSE</td>
<td>0.664</td>
<td>0.820</td>
</tr>
<tr>
<td>R2</td>
<td>0.361</td>
<td>0.377</td>
</tr>
<tr>
<td>2006-2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRMSE</td>
<td>0.231</td>
<td>0.215</td>
</tr>
<tr>
<td>NSE</td>
<td>0.651</td>
<td>0.818</td>
</tr>
<tr>
<td>R2</td>
<td>0.344</td>
<td>0.345</td>
</tr>
</tbody>
</table>

ج- پیش‌بیانی ورودی‌ها

در این پژوهش برای مقایسه آن‌های رودوداده جنب‌حاره‌های مستقر بر روی ایران، سری زمانی داده‌ها به دو دوره پایه شامل: 1990-2010 و دوره آینده: آینده نزدیک 2041-2050 لیست 2 و آینده دور 2071 لیست 1 تقسیم گردید. جدول شماره 5 وضعیت آینده موقعیت روداده مستقر بر روی ایران را در ماه‌های مختلف نشان می‌دهد. به‌اساس مدل اقلیمی CanESM2 در دوره 5 و CanESM2 در دوره 4 مشخص می‌گردد که در ماه‌های سیتمانر نا دستیابی و فوریه موقعیت روداده هم برای آینده نزدیک و دور جانگیزی به سمت شمال را نشان می‌دهد. به‌طوری‌که در سناریوی 4 در آینده نزدیک این گام‌های به ۱۴۴۶ درجه خواهد رسید. علاوه بر این در ماه‌های دیگر مانند
زوئن در سناریو 5 و در آینده نزدیک و همچنین در ماه اگوست در آینده دور جابجایی قابل توجه موقعیت رویاب به شما انقلاب خواهد افتاد. در حالی که در سایر ماه‌ها بیشترین جابجایی به سمت جنوب دیده می‌شود، به طوری که در ماه جولای در سناریو 4.5 به درجه 1.9 در جنوب از ماه‌های دیگر از دهانه در بیشترین حالات موقعیت عرض جغرافیایی رویاب در هر دو سناریو هم برای آینده نزدیک و هم دور جابجایی به سمت شمال را نشان می‌دهد. طوری که در ماه سپتامبر در حالت سناریو 5، برای آینده دور بیش از دو درجه از نشان را می‌دهد. این به شایان- ذکر است که در ماه‌های جولای و اگوست و سپتامبر این میزان قابل توجه است. بررسی در ماه‌های مارس تا مکتب جابجایی به سمت جنوب را نشان می‌دهد؛ اگر کم‌بیشی حالات ضعیف‌تری افتاد.

مطالب شکل 7 نیز بر اساس مدل اقلیمی CanESM2 مشخص می‌گردد که انزو فصلی در زمستان کمترین جابجایی موقعیت رویاب دیگر در هر دو سناریو برای آینده نزدیک و دور انقلاب خواهد افتاد. اما در دو فصل درنگی بهار و پاییز کم‌بیش در تمامی حالات جابجایی به سمت شمال دیده می‌شود که میانگین فصلی آن در بهار برای سناریو 4.5 در آینده نزدیک به بش از یک درجه خواهد رسید. همچنین در پاییز بهینه در بیشتر حالات بش از 1.5 درجه می‌باشد. بررسی در فصل تابستان در تمامی حالات جابجایی به سمت جنوب می‌باشد و مقدار آن در مدل GFDL-CM به آینده دور به 1.9 درجه می‌رسد. مقایسه فصلی مدل بررسی مدل مطالعه قابلیت حاکی از آن است که در سناریو 8.5 برای آینده نزدیک به دیده ماه‌های جولای و اکتبر خواهد شد. در هر دو سناریو این مدل بیشترین جابجایی به سمت شمال در ماه‌های نوامبر و دسامبر کم‌بیش می‌باشد. و راه‌پیمایی مفرط نیز مشخص می‌گردد که با توجه به مدل CanESM2 در دور به‌طور ماه‌های اکتبر و اکوریس، در سایر ماه‌ها سرعت هسته مرکزی رویداد افزایش پیدا می‌کند. به طوری که بلافاصله افزایش در ماه جولای و در سناریو 8.5 برای آینده نزدیک به 3.5 Meter در تابستان خواهد رسید. در حالی که بر اساس مدل سناریو 8.5 برای آینده دور در ماه‌های اکیوریس افزایش سرعت در ماه‌های گفته‌اند تا نواصیر سناریو 8.5 برای آینده دور 25.3 متر در تابستان کاهش خواهد یافت. مطلب قابل توجه در این است که در تابستان کاهش در ماه‌های بین دسامبر تا زوئن افزایش سرعت در ماه‌های اکیوریس تا نواصیر سناریو 8.5 برای آینده دور از بالاترین درجه تغییر بی‌خوردار است؛ به‌طوری که در ماه مارس مقدار آن به 4.0 Meter در تابستان افزایش و در اکتبر و نوامبر 4.0 Meter در تابستان افزایش یافته.
جدول 5: آینده‌نگری موقعیت رودخانه جنوب حاره‌ای بر روی ایران بر اساس دو مدل اقیم CanESM2 و GFDL-CM3 در دو سانیوری

<table>
<thead>
<tr>
<th></th>
<th>CanESM2_rcp8.5</th>
<th>CanESM2_rcp4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.51</td>
<td>0.48</td>
</tr>
<tr>
<td>b</td>
<td>0.42</td>
<td>0.45</td>
</tr>
<tr>
<td>a</td>
<td>0.39</td>
<td>0.41</td>
</tr>
<tr>
<td>b</td>
<td>0.46</td>
<td>0.44</td>
</tr>
<tr>
<td>a</td>
<td>0.38</td>
<td>0.47</td>
</tr>
<tr>
<td>b</td>
<td>0.48</td>
<td>0.45</td>
</tr>
<tr>
<td>a</td>
<td>0.41</td>
<td>0.45</td>
</tr>
<tr>
<td>b</td>
<td>0.42</td>
<td>0.49</td>
</tr>
</tbody>
</table>

جدول 6: آینده‌نگری سرعت سه‌تایی مرکزی رودخانه جنوب حاره‌ای بر روی ایران بر اساس دو مدل اقیم CanESM2 و GFDL-CM3 در دو سانیوری (منری به نامی)

<table>
<thead>
<tr>
<th></th>
<th>CanESM2_rcp8.5</th>
<th>CanESM2_rcp4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.51</td>
<td>0.48</td>
</tr>
<tr>
<td>b</td>
<td>0.42</td>
<td>0.45</td>
</tr>
<tr>
<td>a</td>
<td>0.39</td>
<td>0.41</td>
</tr>
<tr>
<td>b</td>
<td>0.46</td>
<td>0.44</td>
</tr>
<tr>
<td>a</td>
<td>0.38</td>
<td>0.47</td>
</tr>
<tr>
<td>b</td>
<td>0.48</td>
<td>0.45</td>
</tr>
<tr>
<td>a</td>
<td>0.41</td>
<td>0.45</td>
</tr>
<tr>
<td>b</td>
<td>0.42</td>
<td>0.49</td>
</tr>
</tbody>
</table>

GFDL- CanESM2

CM3

GFDL-CM3

CanESM2

CanESM2

CanESM2

CanESM2

CanESM2

CanESM2

CanESM2
نتیجه‌گیری

با توجه به اینکه رودبند جنوب خلیج یکی از مؤلفه‌های اصلی اقیانوس ایران می‌باشد، در دوره سرد سال با جایگاهی به عرض‌های جنوبی سپید می‌شد که به‌دست‌آمده‌های غربی به‌گونه‌ای وارد شوند و همچنین به دلیل عدم سرعت آن در این زمان‌‌ها به‌جای افزایش و پیش‌بینی نقاط عمده‌ای در هدایت آنها باید می‌کنند. در حالی که در دوره گرم سال همزمان با کاهش‌های شدید بنا به فاصله عرض‌های شمالی ایران و ضعف شدن رودبند ورود سامانه‌های رطوبتی شده کاهش پیدا می‌کنند و با برخورداری این‌گونه گفته که در دوره گرم سال اقلیم جنوب خلیج یکی از روند‌های اقلیمی ایران است. در این‌جا اقلیمی‌های گوناگون و نواحی اطراف آن، به این شکل می‌باشد که در ماه‌های مختلف سال رودبند گیرشی می‌باشد، در صورتی که متفاوتی هسته‌های مختلفی رودبند جنوب خلیج یکی از روند‌های جغرافیایی ایران و نواحی محیط‌شناسی می‌باشد که در آن‌جا بازی‌هایی در اثر زمان‌های مختلف نیز دو قسم تغییر می‌پذیرد. زمان‌ها و بهار در طی این دوره زمانی دارای روند جابجایی منعی داری را به ترتیب ۱۴۳۴ و ۱۴۳۷ درجه به عرض‌های شمالی ایران می‌باشد. این موضوع این‌طور سال‌های نیز مورد تأیید است. اما بررسی‌های سرعت هسته‌های رودبند جنوب خلیج یکی از روند‌های اقلیمی ایران است. در حالی که در دوره گرم ایران از نظر کاهش منعی داری پرو‌پورت می‌کند و بررسی در نواحی مختلفی رودبند داری تغییر معنی‌داری نیست. در حالی که در شب رودبند تغییرهای مشابه ایران است. وضعیت این‌ها متفاوتی رودبند مستقر بر روی ایران، بر اساس مدل‌های GFDL-CM3 و CanESM2 در دوره سال‌های ۱۹۸۵ و ۱۹۹۵ می‌باشد. در مدل‌های GFDL-CM3، ساختاری به ظاهر همان می‌باشد. در این مدل‌های GFDL-CM3، ساختاری به ظاهر همان می‌باشد. در این مدل‌های GFDL-CM3، ساختاری به ظاهر همان می‌باشد. در این مدل‌های GFDL-CM3، ساختاری به ظاهر همان می‌باشد. در این مدل‌های GFDL-CM3، ساختاری به ظاهر همان می‌باشد. در این مدل‌های GFDL-CM3، ساختاری به ظاهر همان می‌باشد. در این مدل‌های GFDL-CM3، ساختاری به ظاهر همان می‌باشد. در این مدل‌های GFDL-CM3، ساختاری به ظاهر همان می‌باشد. در این مدل‌های GFDL-CM3، ساختاری به ظاهر H

Research Article

Evaluation of Subtropical Jet Position Displacement on Iran and its Predictability Based on Two Climate Models including CanESM2 and GFDL-CM3

Abdolazim Ghanghermeh1*
1*. Assistant Prof, Department of Geography, Golestan University, Gorgan, Iran

Received: 03-09-2019 Final Revised: 05-02-2020 Accepted: 18-02-2020

Abstract
Iran's location in the latitude of 25 to 40°N in the northern hemisphere has made the subtropical jet stream a factor in regulating humidity systems in Iran, making it easy for humidity systems to enter the country when this jet stream is in Southern Iran. But as it moves northward, its strength decreases. In recent years, it has been reported that the positioning of subtropical jet streams in the Northern Hemisphere is shifting. Therefore, the purpose of this study is to evaluate the position of subtropical jet stream location and its variability over Iran. In this study, data on zoning wind velocity ranged between 30 and 80°E in the Northern Hemisphere, at levels between 1000 and 10 hPa from NOAA, as well as outputs of circulation models including CanESM2 and GFDL-CM3 for the historical period 1948 to 2005 and future periods from 2006 to 2100 were received from IPCC in two scenarios RCP4.5 and RCP8.5. In this study, the main components of the jet stream include the central core velocity of the jet stream and its latitude position. Investigation of the position and velocity of the jet stream indicates that the subtropical jet position changes in Iran and its eastern regions are followed by significant incremental changes. Whereas in west Iran, there is a significant decline in jet stream velocity changes. The future of Jet Stream positioning in Iran based on the CanESM2 and GFDL-CM3 climate models in both rcp4.5 and rcp8.5 scenarios indicates that relative to the base period in both scenarios as well as the near and far future of its position to the north moves.

Keywords: Subtropical Jet Stream, Circulation Models, Humidity Systems, RCP4.5, and RCP8.5 Scenarios.

*Corresponding Author Email: a.ghangherme@gu.ac.ir
References

References (in Persian)

References (in English)

