تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,825 |
تعداد مشاهده مقاله | 8,163,949 |
تعداد دریافت فایل اصل مقاله | 5,462,017 |
تاثیر پیاده سازی PFMEA با رویکرد فازی در ارتقای اثربخشی کلی تجهیزات در صنایع قند | ||
پژوهش های مدیریت عمومی | ||
مقاله 8، دوره 12، شماره 46، اسفند 1398، صفحه 199-226 اصل مقاله (1.64 MB) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/jmr.2020.30009.4580 | ||
نویسندگان | ||
محمد باغبانی![]() ![]() ![]() | ||
1دانشجوی دکتری، گروه آموزشی مدیریت صنعتی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران. | ||
2استاد، گروه آموزشی مدیریت صنعتی، دانشکدهی مدیریت و حسابداری، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران | ||
3استادیار، گروه آموزشی مدیریت ،دانشکدهی مدیریت و حسابداری، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران. | ||
چکیده | ||
هدف از این تحقیق مطالعه تاثیر پیادهسازی تکنیک تجزیه و تحلیل حالات خطا و آثار آن در فرآیند(PFMEA) بر بهبود اثربخشی کلی تجهیزات(OEE) در یک کارخانه تولید قند است. ابتدا میانگین اثربخشی کلی تجهیزات در هشت هفتهی کاری متوالی به عنوان پیش آزمون استخراج گردید. سپس انواع خطاهای بالقوه در فرآیند تولید شناسایی و سه پارامتر شدت خطا، احتمال وقوع خطا و احتمال کشف خطا برای هر حالت خطا بصورت مقیاسهای کلامی و با استفاده از توافق جمعی تعیین گردید و با ضرب مقادیر عددی دِفازی شدهی متناظر این سه پارامتر در همدیگر، میزان عدد اولویت هر خطا محاسبه گردید. در مرحلهی بعد بوسیله ماتریس شدت-وقوع و جدول رتبهبندی ریسک، 24 خطای اولویتدار مشخص شد. سپس راهکارهای مناسب برای کاهش اثرات و یا حذف خطاهای اولویتدار تعیین و پیادهسازی اقدامات اصلاحی و مداخلات لازم در طول هشت هفتهی کاری برنامهریزی شد. در مدت اجرای مداخلات و در پایان هر هفته اثربخشی کلی تجهیزات به عنوان پس آزمون محاسبه شد. در پایان رابطهی بین تغییرات عدد اولویت خطا(RPN) و OEE در قالب همبستگی پیرسون مورد مطالعه قرار گرفت. | ||
کلیدواژهها | ||
PFMEA؛ OEE؛ RPN؛ فازی | ||
مراجع | ||
1-Afefy, I. H. (2013). Implementation of Total Productive Maintenance and Overall Equipment Effectiveness Evaluation. International Journal of Mechanical & Mechatronics Engineering, 13(01), 69-75. 2-Ahire, C., & Relkar, A. (2012). Correlating Failure Mode Effect Analysis (FMEA) & Overall Equipment Effectiveness (OEE). Procedia Engineering, 38, 3482-3486. doi: 10.1016/j.proeng.2012.06.402 3-Aldian, A. (2003). Analysis of Travel Demand in Developing Countries: A Fuzzy Multiple Attribute Decision-Making Approach. Paper presented at the 26th Australasian Transport Research Forum, Wellington New Zeland https://atrf.info/papers/2003/2003_Aldian.pdf 4-Asan, U., & Soyer, A. (2015). Failure Mode and Effects Analysis Under Uncertainty: A Literature Review and Tutorial. In S. Y. Cengiz Kahraman (Ed.), Intelligent Decision Making in Quality Management (pp. 266). Switzerland: Atlantis Press. 5-Banduka, N., Mačužić, I., Stojkić, Ž., Bošnjak, I., & Peronja, I. (2016). Using 80/20 Principle to Improve Decision Making At PFMEA. Paper presented at the 27TH Daaam International Symposium On Intelligent Manufacturing And Automation, Vienna, Austria. 6-Basu, S. (2017). Guided Word Hazard Analysis Plant Hazard Analysis and Safety Instrumentation Systems (pp. 276): Academic Press. 7-Baynal, K., Sarı, T., & Akpınar, B. (2017). Risk management in automotive manufacturing process based on FMEA and grey relational analysis:A case study. Advances in Production Engineering & Management, 13(1), 69–80. doi: https://doi.org/10.14743/apem2018.1.274 8-Bhattacharya, J., Pharm, M., & Phil, M. (2015). Quality Risk Management –Understanding and Control the Risk in Pharmaceutical Manufacturing Industry. International Journal of Pharmaceutical Science Invention, 4(1), 29-41. 9-Cândeaa, G., Kifor, S., & Constantinescu, C. (2014). Usage of case-based reasoning in FMEA-driven software. Paper presented at the 8th International Conference on Digital Enterprise Technology - DET 2014 –Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution. 10-Catelani, M., Ciani, L., & Venzi, M. (2018). Failure modes, mechanisms and effect analysis on temperature redundant sensor stage. Reliability Engineering & System Safety, 180, 425-433. doi: 10.1016/j.ress.2018.08.013 11-Chang, K.-H., & Wen, T.-C. (2010). A novel efficient approach for DFMEA combining 2-tuple and the OWA operator. Expert Systems with Applications, 37(3), 2362-2370. doi: 10.1016/j.eswa.2009.07.026 12-Chen, S.-H. (1985). Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems, 17(2), 113-129. doi: 10.1016/0165-0114(85)90050-8 13-Chen, S. J., & Hwang, C. L. (1992). Fuzzy Multiple Attribute Decision Making Methods and Applications: Springer-Verlag Berlin Heidelberg. 14-Elahi, B. (2018). Risk Analysis Techniques Safety Risk Management for Medical Devices (1st Edition ed., pp. 67): Academic Press. 15-Fattahi, R., & Khalilzadeh, M. (2018). Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Safety Science(102), 290–300. doi: https://doi.org/10.1016/j.ssci.2017.10.018 16-Foulloy, L., Clivillé, V., & Berrah, L. (2019). A fuzzy temporal approach to the Overall Equipment Effectiveness measurement. Computers & Industrial Engineering 127 103–115. doi: https://doi.org/10.1016/j.cie.2018.11.043 17-H.S, H., Pavani, S., & Gangadhar, P. V. S. S. (2013). Evaluating Teachers Ranking Using Fuzzy AHP Technique. International Journal of Soft Computing and Engineering (IJSCE), 2(6), 485-488. 18-H.S., H., Singhai, S. K., & Shukla, R. (2012). Application of Fuzzy Analytic Hierarchy Method in Software Engineering Scenario. International Journal of Computer Applications 57(21), 45-50. 19-Hassan, A., Siadat, A., Yves Dantan, J., & Martin, P. (2010). Conceptual process planning – an improvement approach using QFD, FMEA,and ABC methods. Robotics and Computer-Integrated Manufacturing, 26, 392–401. 20-Helvacioglu, S., & Ozen, E. (2014). Fuzzy based failure modes and effect analysis for yacht system design. Ocean Engineering, 79, 131-141. doi: 10.1016/j.oceaneng.2013.12.015 21-Jahangoshai Rezaee, M., Yousefi, S., Valipour, M., & Mehdi Dehdar, M. (2018). Risk analysis of sequential processes in food industry integrating Multi-stage fuzzy cognitive map and process failure mode and effects analysis. Computers & Industrial Engineering, https://doi.org/10.1016/j.cie.2018.1007.1012. 22-Johnson, K. G., & Khan, M. K. (2003). A study into the use of the process failure mode and effects analysis (PFMEA) in the automotive industry in the UK. Journal of Materials Processing Technology, 139(1-3), 348-356. doi: 10.1016/s0924-0136(03)00542-9 23-Keshavarzi, R., & Abooie, M. H. (2016). Performance Evaluation of Continuous Production Process by Triangular Fuzzy Process Capability Indices. International Journal of Industrial Engineering & Production Research, 27(2). 24-Kianfar, F., Najmi, M., & Ebrahimi, M. (2004). Calculating the Risk Priority Level in the FMEA Model Using Fuzzy Theory. Paper presented at the Second International Management Conference, Tehran. 25-Li, X., He, M., & Wang, H. (2017). Application of failure mode and effect analysis in managing catheter-related blood stream infection in intensive care unit. Medicine (Baltimore), 96(51), e9339. doi: 10.1097/MD.0000000000009339 26-Liu, H.-C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Systems with Applications, 40(2), 828-838. doi: https://doi.org/10.1016/j.eswa.2012.08.010 27-Liu, H. C., Liu, L., & Lin, Q. L. (2013). Fuzzy Failure Mode and Effects Analysis Using Fuzzy Evidential Reasoning and Belief Rule-Based Methodology. IEEE Transactions on Reliability, 62(1), 25. 28-Liua, H.-C., You, J.-X., & Duan, C.-Y. (2019). An integrated approach for failure mode and effect analysis under intervalvalued intuitionistic fuzzy environment. International Journal of Production Economics(207 ), 163–172. doi: http://dx.doi.org/10.1016/j.ijpe.2017.03.008 29-Lo, H.-W., Lioub, J. J. H., Huang, C.-N., & Chuang, Y.-C. (2019). A novel failure mode and effect analysis model for machine tool risk analysis. Reliability Engineering and System Safety(183), 173–183. doi: https://doi.org/10.1016/j.ress.2018.11.018 30-Lundgren, M., Hedlind, M., & Kjellberg, T. (2016). Model Driven Manufacturing Process Design and Managing Quality Paper presented at the 26th CIRP Design Conference. 31-McDermott, R. E., Mikulak, p. J., & Beauregard, M. R. (2009). THE Basics OF FMEA. NewYork: Productivity Press Taylor & Francis Group. 32-Mentes, A., Akyildiz, H., Yetkin, M., & Turkoglu, N. (2015). A FSA based fuzzy DEMATEL approach for risk assessment of cargo ships at coasts and open seas of Turkey. Safety Science, 79, 1-10. doi: 10.1016/j.ssci.2015.05.004 33-Nuchpho, P., Nansaarng, S., & Pongpullponsak, A. (2014). Risk Assessment in the organization by using FMEA Innovation: A Literature Review Paper presented at the 7th International Conference on Educational Reform. https://pdfs.semanticscholar.org/ce07/6544e64c69f656f7b0daf4bf08948fd63d29.pdf 34-Raguram, R. (2014). Implementation of Overall Equipment Effectiveness (OEE). Middle-East Journal of Scientific Research, 20(5), 567-576. doi: 10.5829/idosi.mejsr.2014.20.05.11336 35-Relkar, A. S., & Nandurkar, K. N. (2012). Optimizing & Analysing Overall Equipment Effectiveness (OEE) Through Design of Experiments (DOE). Procedia Engineering, 38, 2973-2980. doi: 10.1016/j.proeng.2012.06.347 36-Reza Abroshan, M., & Hayati, M. (2017). Risk Assessment using Fuzzy FMEA (Case Study: Tehran Subway Tunneling Operations). Indian Journal of Science and Technology, 10(9), 1-9. doi: 10.17485/ijst/2017/v10i9/110157 37-Rezaei, K., Sidi, M., & Nouri, B. (2005). Analysis of Errors and Effects of It. Tehran: Athena(in persian). 38-Rinaldi, G., Thies, P. R., Walker, R., & Johanning, L. (2017). A decision support model to optimise the operation and maintenance strategies of an offshore renewable energy farm. Ocean Engineering 145 250–262. doi: http://dx.doi.org/10.1016/j.oceaneng.2017.08.019 39-Rivera, S. S., & Mc Leod, J. E. (2009). Recommendations Generated about a Discontinuous Distillation Factory of Biofuel. Paper presented at the Proceedings of the World Congress on Engineering, London. 40-Rouhparvar, M., Mazandarani Zadeh, H., & Nasirzadeh, F. (2014). Quantitative Risk Allocation in Construction Projects: A Fuzzy-Bargaining Game Approach. International Journal of Industrial Engineering & Production Research, 25(2), 83-94. 41-Sangeetha, V., & Saravanan, P. (2016). An innovated method using Failure mode and effects analysis for improving quality of the software International Journal of Advanced Research in Computer and Communication Engineering, 5(1), 135-139. 42-Shahin, A. (2004). Integration of FMEA and the Kano model: An exploratory examination. International Journal of Quality & Reliability Managemen, 21, 731–746. 43-Stamatis, D. H. (2003). Failure mode and effect analysis: FMEA from theory to execution. Milwaukee: American Society for Quality, Quality Press. 44-T.J, R. (2009). Fuzzy Logic with Engineering Applications: John Wiley & Sons, Ltd. 45-Wang, W., Liu, X., Qin, Y., & Fuc, Y. (2018). A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral. Safety Science(110 ), 152–163. doi: https://doi.org/10.1016/j.ssci.2018.08.009 45-Wang, Y.-M., Chin, K.-S., Poon, G. K. K., & Yang, J.-B. (2009). Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert Systems with Applications, 36(2), 1195-1207. doi: 10.1016/j.eswa.2007.11.028 46-Yazdi, M., Daneshvar, S., & Setareh, H. (2017). An extension to Fuzzy Developed Failure Mode and Effects Analysis (FDFMEA) application for aircraft landing system. Safety Science, 98, 113-123. doi: https://doi.org/10.1016/j.ssci.2017.06.009 47-Yazdi, M., Nedjati, A., & Abbassi, R. (2018). Fuzzy dynamic risk-based maintenance investment optimization for offshore process facilities. Journal of Loss Prevention in the Process Industries, 57, 194-207. doi: 10.1016/j.jlp.2018.11.014 | ||
آمار تعداد مشاهده مقاله: 418 تعداد دریافت فایل اصل مقاله: 223 |