تعداد نشریات | 27 |
تعداد شمارهها | 556 |
تعداد مقالات | 5,734 |
تعداد مشاهده مقاله | 8,018,311 |
تعداد دریافت فایل اصل مقاله | 5,389,906 |
Adaptive Robust Tracking Control Based on Backstepping Method for Uncertain Robotic Manipulators Including Motor Dynamics | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 2، دوره 4، شماره 1، فروردین 2021، صفحه 13-22 اصل مقاله (3.01 MB) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2020.31792.1213 | ||
نویسندگان | ||
javad keighobadi ![]() | ||
1Department of Electrical and Robotic Engineering | ||
2Department of Electrical and Robatic Enbineering ,Shahrood University of Technology,Iran | ||
چکیده | ||
Recent research on the backstepping control of robotic systems has motivated us to design a robust backstepping voltage-based controller with computational simplicity and ease of implementation. In this paper, an adaptive robust tracking controller based on backstepping method (ARTB) is presented for uncertain electrically-driven robotic manipulators in the framework of voltage control strategy. It is intended to convert robot control problem to motor control problem. In the design procedure, the manipulator dynamics are incorporated into a lumped uncertainty, such that the proposed adaptation law promptly compensates for it. Hence, high tracking accuracy, robust behavior and less complexity are the prominent features of the proposed control system in the presence of external disturbances, parametric uncertainties and un-modeled dynamics. Moreover, the control approach is useful for high-speed tracking purposes. The stability of the closed-loop system is guaranteed based on the Lyapunov theory and the tracking error converges to zero asymptotically. As a case study, the proposed ARTB is simulated on a two-link robot manipulator driven by permanent magnet DC motors. Numerical simulations are included to show the superiority of the proposed controller to a state augmented adaptive backstepping method, a sliding backstepping controller and an adaptive backstepping sliding mode control in tracking the desired trajectory. | ||
کلیدواژهها | ||
Robust tracking control؛ Backstepping method؛ Voltage-based control؛ Adaptation mechanism؛ Electrically-driven robotic manipulators | ||
مراجع | ||
[1] M. Van, H.-J. Kang, and Y.-S. Suh, “Second Order Sliding Mode-Based Output Feedback Tracking Control for Uncertain Robot Manipulators,” Int. J. Adv. Robot. Syst., vol. 10, no. 1, pp. 1–9, 2013. [2] Z. Zhang, L. Zheng, J. Yu, Y. Li, and Z. Yu, “Three Recurrent Neural Networks and Three Numerical Methods for Solving a Repetitive Motion Planning Scheme of Redundant Robot Manipulators,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 3, pp. 1423–1434, 2017. [3] S. S. Saab and P. Ghanem, “A Multivariable Stochastic Tracking Controller for Robot Manipulators without Joint Velocities,” IEEE Trans. Automat. Contr., no. c, pp. 1–16, 2017. [4] F. Sabahi, “Robot Action Space of Tractable Subsumption Architecture,” Int. J. Ind. Electron. Control Optim., vol. 2, no. 4, pp. 297–304, 2019. [5] M. Vijay and D. Jena, “PSO based neuro fuzzy sliding mode control for a robot manipulator,” J. Electr. Syst. Inf. Technol., pp. 1–14, 2016. [6] X. Yin and L. Pan, “Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy,” ISA Trans., vol. 72, pp. 178–184, 2018. [7] K. Yovchev, K. Delchev, and E. Krastev, “State Space Constrained Iterative Learning Control for Robotic Manipulators,” Asian J. Control, vol. 20, no. 1, pp. 1–6, 2018. [8] F. Bouakrif, “Trajectory tracking control using velocity observer and disturbances observer for uncertain robot manipulators without tachometers,” Meccanica, vol. 52, no. 4–5, pp. 861–875, 2017. [9] T. K. Roy, M. A. Mahmud, W. Shen, A. M. T. Oo, and M. E. Haque, “Robust nonlinear adaptive backstepping excitation controller design for rejecting external disturbances in multimachine power systems,” Int. J. Electr. Power Energy Syst., vol. 84, pp. 76–86, 2017. [10] B. Xu, “Disturbance Observer-Based Dynamic Surface Control of Transport Aircraft With Continuous Heavy Cargo Airdrop,” IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 1, pp. 161–170, 2017. [11] W. Lv, F. Wang, and Y. Li, “Finite-time adaptive fuzzy output-feedback control of MIMO nonlinear systems with hysteresis,” Neurocomputing, vol. 296, pp. 74–81, 2018. [12] N. T. Binh, N. A. Tung, D. P. Nam, and N. H. Quang, “An Adaptive Backstepping Trajectory Tracking Control of a Tractor Trailer Wheeled Mobile Robot,” Int. J. Control. Autom. Syst., vol. 17, no. X, pp. 1–9, 2019. [13] N. Nikdel, M. A. Badamchizadeh, V. Azimirad, and M. A. Nazari, “Adaptive backstepping control for an n-degree of freedom robotic manipulator based on combined state augmentation,” Robot. Comput. Integr. Manuf. Elsevier, vol. 44, pp. 129–143, 2017. [14] N. Nikdel, M. Badamchizadeh, V. Azimirad, and M. A. Nazari, “Fractional-Order Adaptive Backstepping Control of Robotic Manipulators in the Presence of Model Uncertainties and External Disturbances,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6249–6256, 2016. [15] S. I. Han and J. M. Lee, “Prescribed performance fuzzy backstepping control for nonlinear large-scale systems,” Int. J. Control. Autom. Syst., vol. 13, no. 6, pp. 1508– 1520, 2015. [16] A. Khajeh, F. Piltan, M. R. Rashidian, and A. Salehi, “Design New Intelligent PID like Fuzzy Backstepping Controller,” I.J Mod. Educ. Comput. Sci., vol. 2, no. February, pp. 15–26, 2014. [17] M. Vijay and D. Jena, “Backstepping terminal sliding mode control of robot manipulator using radial basis functional neural networks,” Comput. Electr. Eng., pp. 1–18, 2017. [18] W. Sun, S. F. Su, J. Xia, and V. T. Nguyen, “Adaptive Fuzzy Tracking Control of Flexible-Joint Robots With Full-State Constraints,” IEEE Trans. Syst. Man, Cybern. Syst., vol. PP, no. 99, pp. 1–9, 2018. [19] Y. Wu, R. Huang, X. Li, and S. Liu, “Adaptive neural network control of uncertain robotic manipulators with external disturbance and time-varying output constraints,” Neurocomputing, vol. 323, pp. 108–116, 2019. [20] X. Jin, “Adaptive Fixed-Time Control for MIMO Nonlinear Systems with Asymmetric Output Constraints Using Universal Barrier Functions,” IEEE Trans. Automat. Contr., vol. 64, no. 7, pp. 3046–3053, 2019. [21] J. Bao, H. Wang, and X. P. Liu, “Adaptive finite-time tracking control for robotic manipulators with funnel boundary,” Adapt. Control Signal Process., pp. 1–15, 2020. [22] M. M. Fateh, “On the Voltage-based Control of Robot Manipulators,” Int. J. Control. Autom. Syst., vol. 6, no. 5, pp. 702–712, 2008. [23] M. Souzanchi-K, A. Arab, M. R. T. Akbarzadeh, and M. M. Fateh, “Robust Impedance Control of Uncertain Mobile Manipulators Using Time-Delay Compensation,” IEEE Trans. Control Syst. Technol., vol. 26, no. 6, pp. 1943–1953, 2018. [24] J. Keighobadi, M. M. Fateh, and H. Chenarani, “Adaptive fuzzy passivation control based on Backstepping Method for Electrically Driven Robotic Manipulators,” 2018 6th RSI Int. Conf. Robot. Mechatronics, no. IcRoM, pp. 292–297, 2018. [25] M. M. Fateh and S. Fateh, “Decentralized direct adaptive fuzzy control of robots using voltage control strategy,” Nonlinear Dyn., vol. 70, no. 3, pp. 1919–1930, 2012. [26] R. Gholipour and M. M. Fateh, “Adaptive task-space control of robot manipulators using the Fourier series expansion without task-space velocity measurements,” Meas. J. Int. Meas. Confed., vol. 123, no. April, pp. 285–292, 2018. [27] N. Nasiri, H. Sadjadian, and A. M. Shahri, “Voltage-based control of a flexible-joint electrically driven robot using backstepping approach,” 4th Annu. Int. Power Electron. Drive Syst. Technol. Conf., pp. 541–546, 2013. [28] J. B. Mbede and J. J. B. Mvogo Ahanda, “Exponential Tracking Control Using Backstepping Approach for Voltage-Based Control of a Flexible Joint Electrically Driven Robot,” J. Robot., pp. 1–11, 2014. [29] C. Kwan and F. L. Lewis, “Robust backstepping control of nonlinear systems using neural networks,” Syst. Man Cybern. Part A Syst. Humans, IEEE Trans., vol. 30, no. 6, pp. 753–766, 2000. [30] S. E. Shafiei and M. R. Soltanpour, “Robust neural network control of electrically driven robot manipulator using backstepping approach,” Int. J. Adv. Robot. Syst., vol. 6, no. 4, pp. 285–292, 2009. [31] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control. New York, 2006. [32] F.-J. Lin, S.-G. Chen, and I.-F. Sun, “Intelligent Sliding-Mode Position Control Using Recurrent Wavelet Fuzzy Neural Network for Electrical Power Steering System,” Int. J. Fuzzy Syst., vol. 19, no. 5, pp. 1344–1361, 2017. [33] F. J. Lin, C. K. Chang, and P. K. Huang, “FPGA-based adaptive backstepping sliding-mode control for linear induction motor drive,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1222–1231, 2007. [34] J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, 1991. [35] M. M. Zirkohi, M. M. Fateh, and M. A. Shoorehdeli, “Type-2 fuzzy control for a flexible-joint robot using voltage control strategy,” Int. J. Autom. Comput., vol. 10, no. 3, pp. 242–255, 2013. [36] Y. Hsiao, P. Tu, and J. Lin, “Sliding Backstepping Control Design for Robotic Manipulator Systems with Motor Dynamics,” IEEE Int. Conf. Control Autom., pp. 667–672, 2014. [37] M. A. M. Basri, “Design and application of an adaptive backstepping sliding mode controller for a six-DOF quadrotor aerial robot,” Robotica, vol. 36, no. 11, pp.1680-1700, 2018. | ||
آمار تعداد مشاهده مقاله: 301 تعداد دریافت فایل اصل مقاله: 353 |