- Aboonouri, E., Ali-Heydari, M. (under publication). “Kalman Filter under the LINEX Loss Function: Forecasting Real Price of Oil” (in Persian).
- Alquist, R., Kilian, L. & Vigfusson, L. (2011). “Forecasting the Price of Oil”. Staff Working Papers11-15, Bank of Canada.
- Anatolyev, S.(2009). “Dynamic modeling under linear-exponential loss”. Economic Modeling, Elsevier, 26(1): 82-89.
- Bahmani-Oskooee, M. & Brown, F. (2004). “Kalman filter approach to estimate the demand for international reserves”. Applied Economics, 36:1655-1668.
- Barone-Adesi, G., Bourgoin, F. & Giannopoulos, K. (1998). “Don’t Look Back”. Risk 11:100–104.
- Barro, R.J. & Martin, X.S. (1990). “World Real Interest Rate,”. RCER Working Papers 227, University of Rochester Center for Economic Research (RCER).
- Batchelor,R. & Peel,D.A.(1998). “Rationality testing under asymmetric loss”. Economics Letter.Elsevier,61:49-54.
- Bernardo, J.M., Juarez, M. (2003). “Intrinsic Estimation”. Bayesian Statistics, 7:465–476.
- Bernardo,J.M., (2007). “Objective Bayesian point and region estimation in location-scale models”. SORT,31(1):3-44.
- Bernardo, J.M., (2007). Modern Bayesian Inference: Foundations and Objective Methods. In Philosophy of Statistics, eds. Bandyopadhyay, P. and Forster, M., Amsterdam: Elsevier.
- Birg´e, L. (2006). “Model selection via testing: an alternative to (penalized) maximum likelihood estimators”. Inst. H. Poincar´e Probab. Statist., 42(3):273–325.
- Cain, M. & Janssen, C. (1995). Ann Inst Stat Math, 47:390- 401. https://doi.org/10.1007/BF00773391
- Calabria,R. & Pulicini,G. (1996). “Point estimation under asymmetric loss functions for left-truncated exponential samples”, Communications in Statistics: Theory and Methods, 25(3): 585-600
- Chen, Y. & Zhang, C., He, K. & Zheng, A. (2018). “Multi-step-ahead crude oil price forecasting using a hybrid grey wave model”. Physica A: Statistical Mechanics and its Applications, Elsevier, 501(C):98 -110.
- Christoffersen, P.F. & Diebold, F.X. (1997). “Optimal prediction under asymmetric loss”. Econometric Theory, 13: 808-817.
- Dees, S., Karadeloglou, P., Kaufmann, R.K. & Sanchez, M. (2007). “Modeling the World Oil Market: Assessment of a Quarterly Econometric Model”. Energy Policy, 35:178–191.
- Döpke, J., Fritsche, U. & Siliverstovs, B. (2010). “Evaluating German business cycle forecasts under an asymmetric loss function”. Macroeconomics and Finance Series 200905:1-18, University of Hamburg, Department of Socioeconomics. https://doi.org/10.1787/jbcma-2010-5kmlj35rx10s.
- Dvir, E. & Rogoff, K.(2014). “Demand effects and speculation in oil markets: Theory and evidence”. Journal of International Money and Finance, 42:113–128.
- El Hédi Arouri, M., Lahiani, A., Lévy, A. & Khuong-Nguyen, D. (2012). “Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models”. Energy Economics, 34:283–293.
- Fama, E.F. & French, K. (1987). “Commodity Future Prices: Some Evidence on Forecast Power, Premiums, and the Theory of Storage”. The Journal of Business, 60(1):55-73.
- Fama, E.F. ) 1965(. “The Behaviour of Stock Market Prices”. Journal of Business, 38(1):34-105.
- Franses, P.H., Legerstee, R.& Paap, R.(2011). “Estimating Loss Functions of Experts”. Tinbergen Institute Discussion Paper No. 2011-177/4. Econometric Institute, Erasmus School of Economics, Erasmus University of Rotterdam & Tinbergen Institute.
- Gao, S. & Lei Y. (2017). “A new approach for crude oil price prediction based on stream learning”. Geoscience Frontiers ,8:183-187.
- Greenand, S. L. & Mork, K. A. (1991). “Towards Efficiency in the Crude Oil Market”. Journal of Applied Econometrics, 6:45-66.
- Gurvich, E. T. & Prilepskiy, I. V. (2018) . “Analysis of expert and official oil price forecasts”. voprosy economiki Redaktsiya zhurnala, 4:83-56.
- Hamilton, J.D. (2014). “Oil Prices as an Indicator of Global Economic Conditions”. Econ Browser Blog Entry, 14 December.
- Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge, UK: Cambridge University Press.
- Hwang, S., Knight, J. & Satchell, S. (2001). “Forecasting nonlinear functions of returns using LINEX loss function,” Annals of Economics and Finance, 2, 187-213.
- Hyun-Jae, R. (2012). “Testing for the possibility of a monetary union in the ASEAN+3 countries: rationality and asymmetric loss functions”. Applied Economics Letters, Taylor & Francis Journals, 19(3):261-268.
- Jafari-Jozani,M., Marchand, É. & Parsian, A.(2012). “Bayesian and Robust Bayesian analysis under a general class of balanced loss functions”. Stat Papers, Springer, 53:51–60.DOI 10.1007/s00362-010-0307-8
- Jammazi ,R. & Aloui, C. (2012). “Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling”. Energy Economics, 34:828–841.
- Kalman, R. E. (1960). “A new approach to linear Filtering and prediction problems: Transactions of the ASME”. Journal of Basic Engineering, 82 (Series D):35-45.
- Kaufmann, R. K. (1995). “ A Model of the World Oil Market for Project LINK: Integrating Economics, Geology, and Politics”. Economic Modeling, 12:165–178.
- Kaufmann, R. K. (2004). “Does OPEC Matter?”. An Econometric Analysis of Oil Prices. Energy Journal, 25:67–91.
- Kilian, L. & Hicks, B. (2013). “Did Unexpectedly Strong Economic Growth Cause the Oil Price Shock of 2003–2008? ”. Journal of Forecasting, 32(5):385-394.
- Kilian, L. & Thomas K.(2014). “Quantifying the speculative component in the real price of oil: The role of global oil inventories”. Journal of International Money and Finance, 42:71–87.
- Koop, G., Poirier, D. J., & Tobias, J.L. (2007). Bayesian Econometric Methods. Cambridge ,UK: Cambridge University Press.
- Koopman, S. J. , & Durbin j.(1998). “Fast filtering and smoothing for multivariate state space models”. Journal of time series analysis, 21:45-89.
- Lalonde, R., Zhu, Z. & Demers, F. (2003). “Forecasting and Analyzing, World Commodity Prices”.Working Paper 2003–24, Bank of Canada.
- Leung, G.C.K. (2010). “China's Oil Use in 1990–2008”. Energy Policy, 38:932–944.
- Li, X., Shang, W. & Wanga, Sh. (2019). “Text-based crude oil price forecasting: A deep learning approach”. International Journal of Forecasting, in Press.
- Li, X., Shi, Y., Wei,J. & Chai, J. (2007). “Empirical Bayes estimators of reliability performances using LINEX loss under progressively Type-II censored samples”. Mathematics and Computers in Simulation, 73: 320–326.
- Lo,A.W., & Wang, J. (1995). “Implementing Option Pricing Models when Asset Returns are Predictable”. Journal of Finance, March 50:87-129.
- Mamipour, S. & Vaezi-Jezeie, F. (2015). “Non-Linear Relationships among the Oil Price, the Gold Price and Stock Market Returns in Iran: a Multivariate Regime-Switching Approach”. Iranian Journal of Economic Studies, 4(1):101-128.
- Mc Cullough(2000). Optimal Prediction with a General loss function, Journal of Combinatorics, Information & System Sciences, 25(1-4):207-221.
- Miller, J. I., & Ni, Sh., (2011). “Long-Term Oil Price Forecasts: A New Perspective on Oil and the Macro economy”. Macroeconomic Dynamics, 15 (Supplement 3):396–415.
- Moosa, I. A., & Al-Loughani, N. E. (1994). “Unbiasedness and Time Varying Risk Premia in the Crude Oil Futures Market”. Energy Economics, 16:99–105.
- Morana, C., (2001). “A Semi-parametric Approach to Short-term Oil Price Forecasting”. Energy Economics, 23:325–338.
- Morana,C.,(2014). “Understanding the Decline in the Price of Oil since June: A semiparametric approach to short-term oil price forecasting”. Energy Economics, 23(Issue 3):325-338.
- Moshiri, S., & Foroutan, F., (2006). “Forecasting Nonlinear Crude Oil Prices”. The energy journal, 27(4):81-95.
- Narayan, P.K., & Narayan, S. (2007). “Modeling Oil Price Volatility”. Energy Policy, 35:6549–6553.
- Pandey, B.N., Dwivedi, N. & Bandyopadhyay, P. (2011). “Comparison between Bayesian and Maximum Likelihood Estimation of Scale Parameter in Weibull Distribution with known shape under Linex loss function”. Journal of Scientific Research, 55: 163-172.
- Patton, A. & Timmerman, A.(2007). “Properties of optimal forecasts under asymmetric loss and nonlinearity”. Journal of Econometrics, 140(2): Pages 884-918.
- Perron,P.,(1989). “The great crash, the oil price shock and the Unit Root Hypothesis”. Journal of Political Economy,57:1361-1401.
- Petris, G., Petrone, S. & Campagnoli, P., (2010).Dynamic Linear Models with R.. London: Springer Publication.
- Phillips, P.C.B. & Loretan, M. (1991). “Estimating Long-run Economic Equilibria”. Review of Economic Studies, 58: 407–436.
- Pindyck, R. S. (1999). “The Long-run Evolution of Energy Prices”. The Energy Journal, 20:1–27.
- Radchenko, S. (2005). “ The Long-run Forecasting of Energy Prices: Using the Model of Shifting Trend”. Working Paper No.1240, University of North Carolina at Charlotte.
- Robert C. (1996). “Intrinsic losses”. Theory and Decision 40:191–214.
- Robert C. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. 2nd ed. New-York: Springer-Verlag, Springer Texts in Statistics.
- Roio ,J.(1987). “ On the admissibility of c[Xbar] + d with respect to the linex loss function”. Communications in Statistics: Theory and Methods, 16(12), 3745-3748, DOI: 10.1080/03610928708829603.
- Sadorsky P. (2006). “Modeling and forecasting petroleum futures volatility”. Energy Economics, 28:467–488.
- Safari, A. & Davallou, M. (2018(. “Oil price forecasting using a hybrid model". Energy Elsevier, 148(C):49-58.
- Samii, M. V. (1992). “Oil Futures and Spot Markets”. OPEC Review, No. 4:409–417.
- Schwartz, E. & Smith, J. E. (2000). “Short-term Variations and Long-term Dynamics in Commodity Prices”. Management Science, 46:893–911.
- Stéphane, L., (2010). “Intrinsic Bayesian inference on a Poisson rate and on the ratio of two Poisson rates”. Journal of Statistical Planning and Inference, Elsevier, doi:10.1016/j.jspi.2012.02.040. 10.1016/j.jspi.2012.02.040. hal-00505234v3.
- Wan, A. T. K. & Hiroko, K. (1999). “An iterative feasible minimum mean squared error estimator of the disturbance variance in linear regression under asymmetric loss”. Statistics & Probability Letters, Elsevier, 45(3):253-259.
- Yannick Baraud.(2011). “Estimator selection with respect to Hellinger-type risks”. Probability Theory and Related Fields, Springer Verlag, 151 (1-2):353-401.
- Zellner, A. (1986). “Bayesian Estimation and Prediction Using Asymmetric Loss Functions”. Journal of the American Statistical Association, 81:446-451.
- Zamani, M. (2004). An Econometrics Forecasting Model of Short Term Oil Spot Price. Paper presented at the 6th IAEE European Conference, Zurich, 2–3 September.
- Zeng, T. & Swanson, N.R.(1998). “Predictive Evaluation of Econometric Forecasting Models in Commodity Future Markets”. Studies in Nonlinear Dynamics and Econometrics, 2:159–177.
- Zhang, Y.J. & Wang, J. (2015). “Exploring the WTI Crude Oil Price Bubble Process Using the Markov Regime Switching Model”. Physica A: Stat. its Appl, 421:377.
|