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Abstract

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian
jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.
The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian
chain with glorious transition probability. Based on the control strategies are designed, the singular complex dynamical
networks are synchronized. A new class of Lyapunov-Krasovskii functional, which contains integral terms is constructed
to derive the stability criteria. Some sufficient conditions for synchronization in the form of linear matrix inequality
(LMI) approach. Finally, numerical example is presented to support the main results of this paper.

Keywords: Singular complex networks, additive time-varying delay, T-S fuzzy theory, Markovian jump, pinning control,
LMIs.

1 Introduction

In recent years, complex dynamical networks have been acquired an extremely good deal of interest due to the fact
they occur widely appearing every where in various fields inside the real-world. For instance, internet, World Wide
Web (WWW), food webs, scientific citation webs neural networks, coordinate systems, informal communities, electrical
control networks, biology, mathematics and physics, chemical systems, robotic manipulator systems, aircraft control
systems, and so on [50], are extensively studied by the researchers. Complex dynamical networks are made out of
singular nodes and coupled nodes, every node represents a dynamical device and association among nodes, in which a
node is primary unit. Several researchers developed various economical synchronization problem for collective behavior
of complex dynamical networks (see [6, 7, 8, 18, 23, 30] and references therein).

Generally representing, the synchronization of complex dynamical networks have been extensively explored in diverse
fields of science and engineering, internet, signal synchronization, biological systems such as synchronous fireflies,
flocking of birds, geostationary satellite, synchronous motor, because of its many ability realistic packages [45, 59].
If two structures have something in not unusual, then synchronization may also occur among them after they are
concerned immediately. In reality, many problems in real world have close courting, with synchronization, which is an
critical research difficulty with the growing examination, and there are measures of results [11, 36]. Synchronization
of coupled oscillators can give an explanation properly for some of the natural phenomena. Within the past few years
widespread interests inside the study of synchronization issues in coupled unique networks have been broadly explored,
because of its potential applications in secure communication [4, 26, 40, 41], signal generators configuration, modeling
brain activity and sample recognition phenomenon [16, 32, 56].
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It merits pointing out that, the theory of “Fuzzy Sets” was introduced by Zadeh, which plays a fundamental job in
the modeling and controlling of complex nonlinear systems. The Takagi–Sugeno (T-S) fuzzy model is a kind of fuzzy
system proposed by Takagi and Sugeno [33], which is described by a set of fuzzy IF-THEN rules which can give local
linear representation of the nonlinear system by decomposing the whole input space into several partial fuzzy spaces and
representing each output space with a linear equation. In reality, complex networks may display a special characteristic
called fuzzy reasoning. For example, in [35], revealed that small-world networks can be modeled by fuzzy logic. In [24]
the fuzzy neural networks, have advantages over pure neural networks since they incorporate the capability of fuzzy
reasoning in handling uncertain information. In [2], fuzzy neural networks can be approximate to a wide range of
nonlinear functions to any desired degree of accuracy under certain circumstances. Among various fuzzy systems, one
of the most famous model is the Takagi-Sugeno(T-S) fuzzy model [54].

Accordingly, most of researchers pay more attention to the singular Markovian jump and singular systems have
their intensive programs in control theory, chemical processes, economics, robots, aerospace engineering, mechanical
systems and other areas, power systems, magnetic-ball suspension systems, a broad concern in articles [2, 29, 34], that
incorporates type of physical systems higher than the regular (nonsingular) one. Control of singular structures has
been extensively studied within the past years due to the very fact that singular structures higher describe physical
systems than regular (nonsingular) one. Those singular systems are also referred to as descriptor systems, semi-state
systems, differential-algebraic systems or semi-state systems [22, 61], implicit systems, generalized state-space systems.
A great number of results based on the theory of regular systems (or state-space systems) had been extended to the
place of singular systems (see, e.g.,[22, 61]). Singular systems can be acquainted with improve the customary complex
networks to clarify the singular unique practices of nodes [58]. Singular systems have some specific complex properties,
which need not be considered in typical frameworks. One of the main research topics in control theory for nearly half a
century as such systems have broad applications in different areas, for example in the Leontief dynamic model, electrical
systems and mechanical systems.

Markovian jump parameters are a collection of structures with transition the various models ruled taking values in
a finite set, which changed into initial delivered by Krasovskii and Lidskii [25]. As is outstanding to all or any, Markov
jump system, a extraordinary elegance of hybrid and random systems, is explicit created up of two additives. The
primary segment refers back to the mode outlined by method of a continuous-time finite-notion inside the method of
Markov [12, 13, 42, 55]. Markovian jump systems have received several analysis interest [14, 49, 38, 48, ?, 9, 21, 28, 63].
The reason of Markovian jump systems have been paid a great deal of attention is that they are usually utilized to
model the the abrupt phenomena such as random failures of the components and sharp environmental disturbances,
changing subsystems interconnections, and so on. Markovian jump systems play a crucial function in describing several
real world applications, inclusive networked control systems, manufacturing systems, conversation systems, monetary
systems, flight systems, electricity systems, further as demonstrating generation frameworks somewhat [1, 53, 10].

Hypothetically taking, control is likewise fundamental method utilized for guiding or driving the system to attain
favored synchronization, that is shape for circumstance that given system of dynamical structures is not synchronized or
the synchronized state is not an predicted one. However, from engineering point of view, it is, sometimes, hard to control
a complex network by means of adding the controllers to all or any nodes. A natural manner to decrease the quantity
of controllers is to utilize the pinning control technique. The creators, in [52, 31] looked into the pinning problem
control for linearly coupled systems by determined, simply can pin the coupled system by method for presenting less
domestically locally feedback controllers. To delight this example, pinning control, in which controllers are implemented
handiest to little big variety of nodes, has been projected.

Recently, the authors in [17, 15, 27, 43] reported that the signals transmitted, within the network control system
from one purpose to different passes through few segments of networks, that may possibly induce successive delays with
different properties due to the variable network transmission conditions which may purpose time delay with some various
characteristics in realistic applications. Primarily based during this, a brand new version for neural networks with two
additive time-varying delays has been planned in [47, 51]. For instance, the time delay within the dynamical model like
ẋ(t) = Ax(t) + BKx(t − τ1(t) − τ2(t)) wherein τ1(t) is that the time delay brought on from device to controller and
τ2(t) is the delay caused from controller to the mechanism. The stability analysis for such systems has been completed
in [17, 15, 27, 43] by usage two additive time varying delay components, τ1(t) + τ2(t) = τ(t). Contrasted with the
single-delay frameworks, this model is under a stronger background of application. Consequently, taking the model
with additive time-varying delay additives into consideration is significant. However, to the best of our knowledge,
there is no work that considers the problem of synchronization for T-S fuzzy singular complex dynamical networks
with Markovian jumping parameters and two additive time-varying delays via pinning control available in the present
literature.

Motivated by the above discussions, the main object of this paper, we investigate the problem of synchronization
criteria for T-S fuzzy singular complex dynamical networks (CDNs) with Marovian jumping parameters and additive
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time-varying delays using pinning control approach. We introduce a Lyapunov-Krasovskii functional and integral
techniques, Jensen’s inequality, various globally Lipschitz continuous activation functions and convexity of matrix
functions, a new delay-dependent stability criteria for Markovian jump T-S fuzzy singular CDNs with additive time-
varying delays are established in terms of LMIs. The proposed LMIs can be effectively solved by utilizing Matlab LMI
Toolbox. A numerical model is introduced to show the adequacy of the proposed outcomes.

This paper is organized as follows. In Section 2 the network model is introduced and a few necessary definitions
and lemmas are presented. In Section 3, we have tendency to propose our novel linear technique to resolve issue of
synchronization for fuzzy singular complex systems with Markovian jump by the pinning control method. In Section 4
we have a tendency to provides numerical model. Finally, the paper is concluded in Section 5.
Notations: Throughout this paper, Rn and Rn×m denotes, severally, the n-dimensional Euclidean space and the set
of all n ×m real matrices. The superscript “T” denotes matrix operation and also the notation X ≥ Y (respectively,
X > Y ) wherever X and Y are symmetric matrices, which X−Y is positive semi-definite (respectively, positive definite),
I is the identity matrix with appropriate dimension. The asterisk “∗” in a matrix is used to represent the term which
is induced by symmetry. ‖ · ‖ refers to the Euclidean vector norm. If A is the square matrix, denote by λmax(A)
(respectively, λmin(A)) means the largest (respectively, smallest) eigenvalue of A. Moreover (Ω,F , {Ft},P) complete
probability space with a filtration, {Ft}t≥0 satisfying the usual conditions (i.e., the filtration contains all P-null sets
and is right continuous). E{·} represents the mathematical expectation.

2 Model description and preliminaries

Let {σ(t)(t ≥ 0)} be a right-continuous Markovian chain on the probability space (Ω,F , {Ft}t≥0,P) taking values
within the finite space S = {1, 2, ....,m} with generator Π = {πij}m×m (i, j ∈ S) given by

Pr
{
σ(t+ ∆t) = j|σ(t) = i

}
=

{
πij∆t+ o(∆t), if i 6= j,
1 + πij∆t+ o(∆t), if i = j,

where ∆t > 0, limt→0(o(∆t)/∆t) = 0 and πij is the transition rate from mode i to mode j satisfying πij ≥ 0 for i 6= j
with πij = −

∑
j=1,j 6=i πij (i, j ∈ S).

In this section, we consider the problem of Markovian jumping T-S fuzzy singular complex dynamical networks
with two additive time-varying delays consisting of N identical nodes coupling which is described by a T-S fuzzy model
composed a set of fuzzy implications. In view of T-S fuzzy model concept, a general class of T-S fuzzy in which each
node is an n-dimensional dynamical subsystem as follows:

Rule: IF {θ1(t) is Fl1} and {θ2(t) is Fl2} and ..... and θg(t) is Flg, THEN Eẋk(t) = A(σ(t))xk(t) + f(xk(t), t) + a1
∑N
w=1 gkwΓ1(σ(t))xw(t)

+a2
∑N
w=1 gkwΓ2(σ(t))xw(t− τ1(t)− τ2(t)) + a3

∑N
w=1 gkwDxj(t− τ(t)),

xk(t) = φk(t), ∀t ∈ [−τ, 0], k = 1, 2, ...., N,

(1)

where E ∈ Rn×n is a singular matrix satisfying rank(E) = r(0 < r < n), xk(t) ∈ Rn is that the state vector
associated with k nodes, {σ(t) (t ≥ 0)} is that the continuous-time Markov process that describes the evolution
of the mode at time t, Flj(l = 1, 2, ...., r; j = 1, 2, ..., g) are the fuzzy sets; r represents the wide variety of IF-
THEN regulations. θj stands for the premise variables and θ(t) = [θ1(t), θ2(t), ...., θg(t)]. Flj(θj(t)) is the grade of the
membership of θj(t) in Flj . A(σ(t)) ∈ Rn×n is a constant matrix, am > 0 (m = 1, 2, 3) are positive constants which
coupling strengths, Γu(σ(t)) = diag{bu1(σ(t)), bu2(σ(t)), ....bun(σ(t))} (u = 1, 2) is an inner-coupling matrices. φk(t) is
continuously differential vector valued initial function on [0, τ1 + τ2] of the system. D = diag{ϑ1, ϑ2, ..., ϑn} ∈ Rn×n
describes a constant diagonal inner-coupling matrix, G = (gkw)N×N (k = 1, 2, ..., N) is the outer-coupling matrix
representing the topological structure of the complex networks, in which gkw is defined as follows: if there is a connection
among node k node w (k 6= w) then gkw = gwk = 1; otherwise, gkw = gwk = 0 (k 6= w). The row sums of zero, i.e.,∑
w 6=k gkw = −gkk, k = 1, 2, ..., N .

Assumption 1: For k = 1, 2, ....., N the nonlinear function f(·) satisfies the globally Lipschitz condition:

‖f(xk(t), t)− f(yk(t), t)‖ ≤ lk‖xk(t)− yk(t)‖, (2)

where lk is a positive constant.
For convenience, each possible value of σ(t) is denoted as i, i ∈ S in the sequel. Then we get A(σ(t) = Ai, Γ1(σ(t)) =

Γ1i, Γ2(σ(t)) = Γ2i.
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Assumption 2: The transmission delays τ1(t) and τ2(t) represents the two delay components in the state vector and
we denote τ(t) = τ1(t) + τ2(t) also if satisfies

0 ≤ τ1(t) ≤ τ1 <∞, τ̇1(t) < d1 <∞,
0 ≤ τ2(t) ≤ τ2 <∞, τ̇2(t) < d2 <∞,

where τ1, τ2, d1 and d2 are known constants. Naturally, we denote τ = τ1 + τ2, d = d1 + d2.
We denote by C([0, τ1 + τ2],Rn) the Banach space of all continuous functions φ(t) = (φ1(t), φ2(t), ....., φn(t))T :

[0, τ1 + τ2]→ Rn with norm ‖φ‖ = sup0≤θ≤(τ1+τ2)‖φ(θ)‖.
Using a standard inference method, the system (1) is inferred as follows

Eẋk(t) =
∑r
l=1 µl(θ(t))

[
Aixk(t) + f(xk(t), t) + a1

∑N
w=1 gkwΓ1ixw(t)

+a2
∑N
w=1 gkwΓ2ixw(t− τ1(t)− τ2(t)) + a3

∑N
w=1 gkwDxw(t− τ(t))

]
,

xk(t) = φk(t), ∀t ∈ [−τ, 0], k = 1, 2, ...., N,

(3)

where µl(θ(t)) is the normalized membership function of the inferred fuzzy set ρl(θ(t)), that is,

µl(θ(t)) =
ρl(θ(t))∑r
l=1 ρ1(θ(t))

, ρl(θ(t)) =

g∏
j=1

Flj(θ(t)),

and Flj(·) is the grade membership function of θg(t) in Flj . We assume

ρl(θ(t)) ≥ 0, l = 1, 2.....r,

r∑
l=1

ρl(θ(t)) > 0, for any θ(t).

Hence µl(θ(t)) satisfies µl(θ(t)) ≥ 0, l = 1, 2, ...., r,
∑r
l=1 µl(θ(t)) = 1, for any θ(t).

Correspondingly the response complex network with the control inputs uk(t) ∈ Rn (k = 1, 2, ...., N), can be written as
Eẏk(t) =

∑r
l=1 µl(θ(t))

[
Aiyk(t) + f(yk(t), t) + a1

∑N
w=1 gkwΓ1iyw(t)

+a2
∑N
w=1 gkwΓ2iyw(t− τ1(t)− τ2(t)) + a3

∑N
w=1 gkwDyw(t− τ(t)) + uk(t)

]
,

yk(t) = ϕk(t), ∀t ∈ [−τ, 0], k = 1, 2, ...., N,

(4)

where ϕk(t) is continuously differential vector-valued initial functions on [0, τ1 + τ2]; uk(t) is defined by

uk(t) =

{
−a4σkΓ3(yk(t)− xk(t)), k = 1, 2, ..., l,

0, k = l + 1, l + 2, ..., N.
(5)

Let ek(t) = yk(t)− xk(t) be the synchronization error of the kth node with CDNs (3) and (4), the following model can
be obtained: 

Eėk(t) =
∑r
l=1 µl(θ(t))

[
Aiek(t) + Fk(ek(t), t) + a1

∑N
w=1 gkwΓ1iew(t)

+a2
∑N
w=1 gkwΓ2iew(t− τ(t)) + a3

∑N
w=1 gkwDew(t− τ(t))− c4σkΓ3ek(t)

]
,

ek(t) = ψk(t), t ∈ [−τ, 0], σ(0) = σ0, k = 1, 2, ...., N,

(6)

where Fk(ek(t), t) = f(yk(t), t)− f(xk(t), t) and ψk(t) = φk(t)− ϕk(t).
Denoting σk = 0 (k = l + 1, l + 2, ...., N), at that point we may also compose the error system in its compact

structure as

Eė(t) =

r∑
l=1

µl(θ(t))
[
Aie(t) + F (e(t), t) + a1Γ1iGe(t) + a2Γ2iGe(t− τ(t)) + a3Dew(t− τ(t))UT − a4σΓ3ek(t)

]
, (7)

where e(t) = (e1(t), e2(t), ...., eN (t)), F (e(t), t) = (F1(e1(t)), F2(e2(t)), ....., FN (eN (t))) and σ = diag{σ1, σ2, ...., σN}.
By the properties of the outer-coupling matrix G, there exists a unitary matrix U = [U1, U2, ...., UN ] ∈ RN×N to
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such an extent that UTG = ΛUT with Λ = diag{λ1, λ2, ....., λN} and UUT = I. Utilizing the nonsingular transform
e(t)U = z(t) = [z1(t), z2(t), ...., zN (t)] ∈ RN×N , from condition (7), it follows the network condition

Eż(t) =

r∑
l=1

µl(θ(t))
[
Aiz(t) + F (e(t), t)U + a1Γ1iΛz(t) + a2Γ2iΛz(t− τ(t)) + a3Dz(t− τ(t))Λ− a4σΓ3z(t)

]
. (8)

In a similar manner, display (8) can be composed as

Eżk(t) =

r∑
l=1

µl(θ(t))
[
(Ai + a1Γ1iλk − a4σkΓ3)zk(t) + hk(t) + a2Γ2iλkzk(t− τ(t)) + a3Dλkzk(t− τ(t))

]
, k = 1, 2, ..., N, (9)

where hk(t) = F (e(t), t)Uk.

Definition 2.1. [46] Complex dynamical network (1) is said to be global (asymptotically) synchronized by pinning
control, if

limt→∞ = ‖xk(t)− yk(t)‖ = 0, k = 1, 2, ..., N. (10)

Definition 2.2. The pair (E,Ai + a1Γ1iλk − a4σkΓ3) is said to be regular, if there exist a scalar a such that det(aE−
(Ai + a1Γ1iλk − a4σkΓ3)) is not identically zero.

Definition 2.3. The pair (E,Ai+a1Γ1iλk−a4σkΓ3) is said to be impulsive free, if it is regular and satisfies deg(det(aE−
(Ai + a1Γ1iλk − a4σkΓ3))) = rank(E).

Lemma 2.4. [16] The eigenvalues of an irreducible matrix G = (gkw) ∈ RN×N with
∑N
w 6=k gkw = −gkk, k = 1, 2, ...., N

satisfies the properties properties:
(i) Real parts of all eigenvalues of G are not exactly or equivalent to 0 with multiplicity 1,
(ii) G has a right eigenvector (1, 1, ......., 1)T corresponding to the eigenvalue 0.

Lemma 2.5. [16] In the event that for any constant matrix R ∈ Rm×m, R = RT > 0, scalar γ > 0 and a vector
function Φ : [0, γ]→ Rm such that the integrations concerned is well defined, then the following inequality holds:

−γ
∫ t

t−γ
χ̇T (s)χ̇(s)ds ≤

 χ(t)

χ(t− γ)

T  −R R

∗ −R

 χ(t)

χ(t− γ)

 .

Lemma 2.6. [39] The pair (E,Ai + a1Γ1iλk − a4σkΓ3) is said to regular and impulsive free if and only if there exist
matrices Pki such that the following inequalities hold for k = 2, 3, ......, N :
(1) ETPki = PkiE ≥ 0 and
(2) (Ai + a1Γ1iλk − a4σkΓ3)TPki + PT

ki(Ai + a1Γ1iλk − a4σkΓ3) < 0.

Lemma 2.7. [20] (Jensen’s inequality) For a positive matrix M ∈ Rm×m, M = MT > 0, two scalars hU > hL > 0,
such that the following concerned integrations are well defined, then

− (hU − hL)

∫ t−hL

t−hU

xT (s)Mx(x)ds ≤ −
(∫ t−hL

t−hU

xT (s)ds
)
M
(∫ t−hL

t−hU

x(s)ds
)
,

− h2U − h2L
2

∫ t−hL

t−hU

∫ t

s

xT (u)Mx(u)duds ≤ −
(∫ t−hL

t−hU

∫ t

s

xT (u)duds
)
M
(∫ t−hL

t−hU

∫ t

s

x(u)duds
)
.

Lemma 2.8. (Schur complement) [5] Given constant matrices Ω1, Ω2 and Ω3 with appropriate dimensions, where
ΩT1 = Ω1 and ΩT2 = Ω2 > 0, then Ω1 + ΩT3 Ω−12 Ω3 < 0, if and only if Ω1 ΩT3

∗ −Ω2

 < 0 or

 −Ω2 Ω3

∗ Ω3

 < 0.

To date, we converted the synchronization issue of the T-S fuzzy singular complex networks (1) into the synchro-
nization issue of the N bits of the relating error dynamical network (9). We will see from Lemma 2.4 that λ1 = 0 and
z1(t) = e(t)U1 = 0. Consequently, if the following (N − 1) bits of the relating error dynamical system

Eżk(t) =

r∑
l=1

µl(θ(t))
[
(Ai + a1Γ1iλk − a4σkΓ3)zk(t) + hk(t) + a2Γ2iλkzk(t− τ(t)) + a3Dλkzk(t− τ(t))

]
, k = 2, 3, ....., N (11)
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Remark 2.9. The main contributions of this paper are as follows: (i). Since singular systems give a more general
description of physical systems than the normal one, there are many extended concepts and results are studies from
the regular systems theory into singular systems (ii). Master-slave Markovian jumping T-S fuzzy singular complex
dynamical networks. By using pinning control approach, can be equivalently expressed as the error dynamical system
with all globally Lipschitz continuous activation function and additive time-varying delay function. (iii). Singular
systems are introduced to improve the ordinary complex networks based on T-S fuzzy theory. (iv). And suitable
Lyapunov-Krasovskii functional and utilize integral inequality technique, piecewise analysis method to derive in terms
of linear matrix inequalities (LMIs). The proposed LMIs can be effectively understood by utilizing Matlab LMI Toolbox.
(v). At last, a numerical example is presented to illustrate the effectiveness of the proposed results.

Remark 2.10. Network (1) is a Markovian jumping singular complex network model with additive time-varying delays.
It means that [62] the communication of information at each node with other nodes takes place at time t as well as at
time (t− τ1 − τ2). Truly, it happens in the real world as we can see in stock market, the decision making of trade-off is
impacted by the information at time t and at (t−τ1−τ2). It is quite clear that the error occurrence with communication
of information with both nodes at time t and at (t− τ1 − τ2) is much smaller than that occurred with only one of them
in [57].

3 Synchronization of singular complex dynamical networks with additive
time-varying delays

In this section, the delay-dependent stability condition for the synchronization problem for singular complex dynamical
network system (11) is investigated by utilizing the Lyapunov functional method combining with the LMI techniques.
Let us define

ηTk (t) =
[
zTk (t) zTk (t− τ(t)) zTk (t− τ1(t)) zTk (t− τ1) zTk (t− τ1 − τ2)

∫ t−τ1

t−τ1−τ2
zTk (s)ds

∫ t

t−τ1
zTk (s)ds hTk (t)

]
, (12)

δk =
[
(Ai + a1λkΓ1i − a4σkΓ3) a2Γ2iλk + a3Dλk 0 0 0 0 0 I

]
. (13)

Then,

Eżk(t) = δkηk(t). (14)

The inequality (2) and the Lipschitz continuity of hk(t) can be utilized to make hk(t) to satisfies

∥∥∥hk(t)
∥∥∥ =

∥∥∥ N∑
w=1

[f(xw(t), t)− f(yw(t), t)]ukw

∥∥∥ ≤ N∑
w=1

∥∥∥[f(xw(t), t)− f(yw(t), t)]
∥∥∥|ukw|

≤
N∑
w=1

lk

∥∥∥xw(t)− yw(t)
∥∥∥ =

N∑
w=1

lk

∥∥∥ew(t)
∥∥∥ ≤ N∑

w=1

l
∥∥∥zw(t)

∥∥∥ =

N∑
w=2

l
∥∥∥zw(t)

∥∥∥, (15)

where ukw is the w-th element of Uk and l = max lk. Therefore the following inequalities holds:

N∑
k=2

(∥∥∥hk(t)
∥∥∥− l N∑

w=2

∥∥∥zw(t)
∥∥∥) =

N∑
k=2

∥∥∥hk(t)
∥∥∥− l N∑

k=2

N∑
w=2

∥∥∥zw(t)
∥∥∥ =

N∑
k=2

(∥∥∥hk(t)
∥∥∥− (N − 1)l

∥∥∥zk(t)
∥∥∥) ≤ 0, (16)

if the following inequality is satisfied∥∥∥hk(t)
∥∥∥− (N − 1)l

∥∥∥zk(t)
∥∥∥ ≤ 0, k = 2, 3, ..., N, (17)

where l = max lk. From equation (10) and inequality (15)-(17), there exist positive diagonal matrices Sk such that

ηTk (t)diag
{
− (N − 1)lSk 0 0 0 0 0 0 Sk

}
ηk(t) = ηTk (t)Φkηk(t) ≤ 0. (18)

Theorem 3.1. Assume that (1) and (2) holds. Then the T-S fuzzy singular Markovian jumping error dynamical
network (11) is asymptotically stable. For a given scalars τ1 > 0, τ2 > 0, d1 > 0, and d2 > 0, if there exist nonnegative
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constants αk, nonnegative definite matrices Pki > 0, Qkq > 0, Mkq > 0 (q = 1, 2, 3, 4), Nk1 > 0, Nk2 > 0 and positive
diagonal matrices Sk such that the following LMIs hold ∀ i ∈ S:

ETPki = PkiE ≥ 0, Ψi < 0, i = 1, 2, ...., N, k = 2, 3, ....N, (19)

Ψi =



Υ11 Υ12 0 Υ14 0 Υ16
2
τ1

ETNk1E Pki Υ19

∗ −(1 − d)Qk2 0 0 0 0 0 0 Υ29

∗ ∗ Υ33 0 0 0 0 0 0

∗ ∗ ∗ Υ44
1
τ2

ETMk2E 0 0 0 0

∗ ∗ ∗ ∗ Υ55 0 0 0 0

∗ ∗ ∗ ∗ ∗ Υ66 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Υ77 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −αkSk I

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R−1



, (20)

where

Υ11 = Pki(Ai + a1λkΓ1i − a4σkΓ3) + (Ai + a1λkΓ1i − a4σkΓ3)TPki +
m∑
j=1

πijPkj + Qk1 + Qk3

+ τ22Mk3 + τ21Mk4 −
1

τ1
ETMk1E− 2ETNk2E + αk(N − 1)lSk, Υ12 = Pkia2Γ2iλk + Pkia3Dλk

Υ14 =
1

τ1
ETMk1E, Υ16 =

2

τ2
ETNk2E, Υ19 = Ai + a1Γ1iλk − a4σkΓ3, Υ29 = a2Γ2iλk + a3Dλk,

Υ33 = −(1− d1)(Qk1 −Qk2), Υ44 = Qk4 −Qk3 −
1

τ1
ETMk1E−

1

τ2
ETMk2E, Υ55 = −Qk4

− 1

τ2
ETMk2E, Υ66 = −Mk3 −

2

τ22
ETNk2E, Υ77 = −Mk4 −

2

τ21
ETNk1E,

R = ET (τ1Mk1 + τ2Mk2)E +
τ21
2
ETNk1E +

τ22
2
TNk2E. (21)

Proof. Let us consider the following Lyapunov-Krasovskii functional candidate to be

Vk(zk(t), i, t) = Vk1(zk(t), i, t) + Vk2(zk(t), i, t) + Vk3(zk(t), i, t) + Vk4(zk(t), i, t), (22)

where

Vk1(zk(t), i, t) = zTk (t)PkiEzk(t), (23)

Vk2(zk(t), i, t) =

∫ t

t−τ1(t)
zTk (s)Qk1zk(s)ds+

∫ t−τ1(t)

t−τ(t)
zTk (s)Qk2zk(s)ds

+

∫ t

t−τ1
zTk (s)Qk3zk(s)ds+

∫ t−τ1

t−τ1−τ2
ztk(s)Qk4zk(s)ds, (24)

Vk3(zk(t), i, t) =

∫ 0

−τ1

∫ t

t+ρ

żTk (s)ETMk1Eżk(s)dsdρ+

∫ −τ1
−τ1−τ2

∫ t

t+ρ

żTk (s)ETMk2Eżk(s)dsdρ

+ τ2

∫ −τ1
−τ1−τ2

∫ t

t+ρ

zTk (s)Mk3zk(s)dsdρ+ τ1

∫ 0

−τ1

∫ t

t+ρ

zTk (s)Mk4zk(s)dsdρ, (25)

Vk4(zk(t), i, t) =

∫ 0

−τ1

∫ 0

θ

∫ t

t+ρ

żTk (s)ETNk1Eżk(s)dsdρdθ +

∫ −τ1
−τ1−τ2

∫ 0

θ

∫ t

t+ρ

żTk (s)ETNk2Eżk(s)dsdρdθ. (26)

Then

V̇k1(zk(t), i, t) = 2zTk (t)PkiEżk(t),

=

r∑
l=1

µl(θ(t))
[
zTk (t)

(
Pki(Ai + a1λkΓ1i − a4σkΓ3) + (Ai + a1λkΓ1i − a4σkΓ3)TPki

)
zk(t)

+ zTk (t)
(

2Pki(a2Γ2iλk + a3Dλk)
)
zk(t− τ(t)) + zTk (t)(2Pki)hk(t)
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+

m∑
j=1

πijz
T
k (t)Pkjzk(t)

]
, (27)

V̇k2(zk(t), i, t) = zTk (t)
[
Qk1 + Qk3

]
zk(t)− zTk (t− τ1(t))

[
(1− τ̇1(t))

(
Qk1 −Qk2

)]
zk(t− τ1(t))

+ zTk (t− τ1)
[
Qk4 −Qk3

]
zk(t− τ1)− zTk (t− τ1 − τ2)Qk4zk(t− τ1 − τ2)

+ zTk (t− τ(t))
[
− (1− τ̇1(t)− τ̇2(t))Qk2

]
zk(t− τ(t)), (28)

V̇k3(zk(t), i, t) = żTk (t)ET
[
τ1Mk1 + τ2Mk2

]
Eżk(t) + zTk (t)

[
τ22Mk3 + τ21Mk4

]
zk(t)

−
∫ t

t−τ1
żTk (s)ETMk1Eżk(s)ds−

∫ t−τ1

t−τ1−τ2
żTk (s)ETMk2Eżk(s)ds

− τ2
∫ t−τ1

t−τ1−τ2
zTk (s)Mk3zk(s)ds− τ1

∫ t

t−τ1
zTk (s)Mk4zk(s)ds, (29)

V̇k4(zk(t), i, t) =
τ21
2
żTk (t)ETNk1Eżk(t)−

∫ 0

−τ1

∫ t

t+θ

żTk (s)ETNk1Eżk(s)dsdθ +
τ22
2
żTk (t)ETNk2Eżk(t)

−
∫ −τ1
−τ1−τ2

∫ t

t+θ

żTk (s)ETNk2Eżk(s)dsdθ. (30)

By Lemma 2.5 and 2.7, it can be seen that

−
∫ t

t−τ1
żTk (s)ETMk1Eżk(s)ds ≤ 1

τ1

 zk(t)

zk(t− τ1)

T  −ETMk1E ETMk1E

∗ −ETMk1E

×
 zk(t)

zk(t− τ1)

 , (31)

−
∫ t−τ1

t−τ1−τ2
żTk (s)ETMk2Eżk(s)ds ≤ 1

τ2

 zk(t− τ1)

zk(t− τ1 − τ2)

T  −ETMk2E ETMk2E

∗ −ETMk2E

×
 zk(t− τ1)

zk(t− τ1 − τ2)

 ,

(32)

−τ2
∫ t−τ1

t−τ1−τ2
zTk (s)Mk3zk(s)ds ≤ −

∫ t−τ1

t−τ1−τ2
zTk (s)dsMk3

∫ t−τ1

t−τ1−τ2
zk(s)ds, (33)

−τ1
∫ t

t−τ1
zTk (s)Mk4zk(s)ds ≤ −

∫ t

t−τ1
zTk (s)dsMk4

∫ t

t−τ1
zk(s)ds. (34)

Similarly,

−
∫ 0

−τ1

∫ t

t+θ

żTk (s)ETNk1Eżk(s)dsdθ ≤ − 2

τ21

∫ 0

−τ1

∫ t

t+θ

żTk (s)dsdθETNk1E ×
∫ 0

−τ1

∫ t

t+θ

żk(s)dsdθ, (35)

−
∫ −τ1
−τ1−τ2

∫ t

t+θ

żTk (s)ETNk2Eżk(s)dsdθ ≤ − 2

τ22

∫ −τ1
−τ1−τ2

∫ t−τ1

t+θ

żTk (s)dsdθETNk2E ×
∫ −τ1
−τ1−τ2

∫ t

t+θ

żk(s)dsdθ. (36)

From equations (27)-(36) we get,

V̇k(zk(t), i, t) =

r∑
l=1

µl(θ(t))
{
zTk (t)

[
Pki(Ai + a1λkΓ1i − a4σkΓ3) + (Ai + a1λkΓ1i − a4σkΓ3)TPki

]
zk(t)

+ zTk (t)[2Pkia2λkΓ2i + a3Dλk]zk(t− τ(t)) + zTk (t)[2Pki]hk(t) +

m∑
j=1

πijz
T
k (t)Pkjzk(t)

+ zTk (t)
[
Qk1 + Qk3

]
zk(t)− zTk (t− τ1(t))

[
(1− τ̇1(t))(Qk1 −Qk2)

]
zk(t− τ1(t))

+ zTk (t− τ1)
[
Qk4 −Qk3

]
zk(t− τ1)− zTk (t− τ1 − τ2)Qk4zk(t− τ1 − τ2)

+ zTk (t− τ(t))
[
− (1− τ̇1(t)− τ̇2(t))Qk2

]
zk(t− τ(t)) + żTk (t)ET

[
τ1Mk1 + τ2Mk2

]
Eżk(t)



Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping ... 61

+ zTk (t)
[
τ22Mk3 + τ21Mk4

]
zk(t) +

1

τ1

 zk(t)

zk(t− τ1)

T  −ETMk1E ETMk1E

∗ −ETMk1E


×

 zk(t)

zk(t− τ1)

+
1

τ2

 zk(t− τ1)

zk(t− τ1 − τ2)

T  −ETMk2E ETMk2E

∗ −ETMk2E



×

 zk(t− τ1)

zk(t− τ1 − τ2)

− ∫ t−τ1

t−τ1−τ2
zTk (s)dsMk3

∫ t−τ1

t−τ1−τ2
zk(s)ds−

∫ t

t−τ1
zTk (s)dsMk4

∫ t

t−τ1
zk(s)ds

+
τ21
2
żTk (t)ETNk1Eżk(t)− 2

τ21

[
τ1zk(t)−

∫ t

t−τ1
zk(s)ds

]T
ETNk1E

[
τ1zk(t)−

∫ t

t−τ1
zk(s)ds

]
− 2

τ22

[
τ2zk(t)−

∫ t−τ1

t−τ1−τ2
zk(s)ds

]T
ETNk2E

[
τ2zk(t)−

∫ t−τ1

t−τ1−τ2
zk(s)ds

]}
. (37)

It can be obtained from (13),(18) and (37) that

V̇k(zk(t), i, t) =

r∑
l=1

µl(θ(t))ηk(t)T (∆ + δTk Rδk)ηk(t), (38)

where

∆ =



Υ11 Υ12 0 1
τ1

ETMk1E 0 2
τ2

ETNk2E
2
τ1

ETNk1E Pki

∗ −(1− d)Qk2 0 0 0 0 0 0

∗ ∗ Υ33 0 0 0 0 0

∗ ∗ ∗ Υ44
1
τ2

ETMk2E 0 0 0

∗ ∗ ∗ ∗ Υ55 0 0 0

∗ ∗ ∗ ∗ ∗ Υ66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Υ77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −αkSk



,

Υ11 = Pki(Ai + a1λkΓ1i − a4σkΓ3) + (Ai + a1λkΓ1i − a4σkΓ3)TPki +

m∑
j=1

πijPkj

+ Qk1 + Qk3 + τ22Mk3 + τ21Mk4 −
1

τ1
ETMk1E− 2ETNk2E + αk(N − 1)lSk,

δk =
[
(Ai + a1λkΓ1i − a4σkΓ3) a2Γ2iλk + a3Dλk 0 0 0 0 0 I

]
,

and Υ12, Υ33, Υ44, Υ55, Υ66, Υ77 and R defined in (21). It follows readily from (38) that

V̇k(zk(t), i, t) ≤
r∑
l=1

µl(θ(t))η
T
k (t)(∆ + δTk Rδk)ηk(t), (39)

By using the Schur complement Lemma 2.8, it can be seen that the inequality (20) is equivalent to ∆ + δTk Rδk, which

implies V̇(zk(t), i, t) ≤ −ρ‖ηTk (t)‖2 < 0, we get V̇(zk(t), i, t) < 0, where ρ = −λmax(∆ + δTk Rδk). Considering that

ETPki = PkiE ≥ 0, the stable result cannot be received via Lyapunov stability theory because the rank of ETPki within
the Lyapunov function Vk1(zk(t), i, t) is r < n. In view of Lemma 2.6 it is clear that the pair (E,Ai+a1λkΓ1i−a4σkΓ3)
is regular and impulse free on every occasion the inequalities (19)-(22) keep. Then there exist matrices Uk1 ∈ Rr×n,
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Uk2 ∈ Rn−r, Wk1 ∈ Rn×r, Wk2 ∈ Rn−r, such that Uk = [UTk1 U
T
k2] and Wk = [WT

k1 W
T
k2] are two nonsingular matrices

and the following standard decomposition holds;

UkEWk = diag{Ir, 0}, (40)

Uk(Ai + a1λkΓ1i − a4σkΓ3)Wk = diag{Āki, In−r}, (41)

where Āki ∈ Rr×r, k = 2, 3, ..., N . The network system (11) is equivalent to
ż
(1)
k = Ākiz

(1)
k + Uk1hk +

(
a2λkUk1Γ2riWk1 + a3DUk1λkWk1

)
z
(1)
k (t− τ(t)),

0 = z
(2)
k + Uk2hk +

(
a2λkUk2Γ2(n−r)iWk2 + a3DλkUk2Wk2

)
z
(2)
k (t− τ(t)),

k = 2, 3, ....., N,

(42)

where W−1k zk(t) =

 z
(1)
k

z
(2)
k

, Γ2ri = diag{d1(i), d2(i), ......, dr(i)} and Γ2(n−r)i = diag{dr+1(i), dr+2(i), ....., dn(i)}.

Let U−Tk PkiWk =

 P
(1)
ki P

(2)
ki

P
(3)
ki P

(4)
ki

. t that point as indicated by equations (19), (40) and (41), anything but difficult

to see that P
(1)
ki = P

(1)T
ki and P

(2)
ki = 0. Subsequently,

Vk1(zk(t), i, t) = z
(1)T
k (t)P

(1)
ki Ez

(1)
k (t). (43)

From V̇k(zk(t), i, t) < 0, z
(1)
k (t) of system (11) is asymptotically stable, i.e., limt→∞‖z(1)k (t)‖ = 0, k = 2, 3, ...., N . In

the following, we display that z
(2)
k (t) additionally are asymptotically stable. From equation (42) and comparing with

[37], deciding Uk2 such that Uk2U
T
k2 = In−r which means that ‖Uk2‖ = 1 and the use of Lemma 2.4, we have∥∥∥z(2)k (t)

∥∥∥ =
∥∥∥Uk2hk + (a2λkUk2Γ2(n−r)iWk2 + a3DλkUk2Wk2)z

(2)
k (t− τ(t))

∥∥∥
≤
∥∥∥Uk2∥∥∥∥∥∥hk∥∥∥+

(
a2max(λk)

∥∥∥Uk2∥∥∥∥∥∥Γ2(n−r)i

∥∥∥∥∥∥Wk2

∥∥∥+ a3max(λk)
∥∥∥D∥∥∥∥∥∥Wk2

∥∥∥Uk2∥∥∥∥∥∥)∥∥∥z(2)k (t− τ(t))
∥∥∥ ≤ ∥∥∥hk(t)

∥∥∥ =

N∑
k=2

l
∥∥∥zk(t)

∥∥∥
(

1−
N∑
k=2

l
∥∥∥Wk

∥∥∥)∥∥∥z(2)k (t)
∥∥∥ ≤ N∑

k=2

l
∥∥∥Wk

∥∥∥∥∥∥z(1)k (t)
∥∥∥.

If we choose Wk such that,
(

1−
∑N
k=2 l‖Wk‖

)
> 0 which leads limt→∞‖z(2)k ‖ = 0, k = 2, 3, ...., N. This completes the

proof.

Remark 3.2. Numerous scientific models for real-world phenomena are characteristically nonlinear, and the stability
investigation and synthesis issues for nonlinear systems are typically difficult. In the previous, the fuzzy logic theory has
been shown to be successful in managing with a variety of complex nonlinear systems, which has subsequently received a
set of consideration in the literature (see [3],[44]). It has turned out to be one of the most valuable approaches for using
the qualitative knowledge of a framework to the structure a controller for complex networks [60]. The local dynamics of
each fuzzy rule could be expressed by nonlinear systems with discrete delay. The overall fuzzy model can be achieved by
fuzzy “blending” of these nonlinear systems.

Remark 3.3. Then Γ1 = 0, the system (11) reduces to

Eżk(t) =

r∑
l=1

µl(θ(t))
[
Ai − a4σkΓ3)zk(t) + hk(t) + (a2Γ2iλk + a3Dλk)zk(t− τ(t))

]
, k = 2, 3, ....., N. (44)

Remark 3.4. In this paper, we constructed a suitable Lyapunov Krasovskii functionals containing useful integral
terms. Meanwhile, introducing Lemma 2.5 for the integral terms V̇k3(zk(t), i, t), terms plays an important role in
the improvement of our stability results. Lemma 2.4 provides a new integral inequality which fully use the relationship
between the terms in the −

∫ t
t−τ1 ż

T
k (s)ETMk1Eżk(s)ds and −

∫ t−τ1
t−τ1−τ2 ż

T
k (s)ETMk2Eżk(s)ds within the system of LMIs.
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Remark 3.5. Changing the nonlinear part f(xk(t), t) into linear one f(xk(t)), then the system (1) turns into the
following system

Eẋk(t) = A(r(t))xk(t) + f(xk(t)) + a1

N∑
w=1

gkwΓ1(r(t))xw(t)

+ a2

N∑
w=1

gkwΓ2(r(t))xw(t− τ1(t)− τ2(t)) + a3

N∑
w=1

gkwDxj(t− τ(t)), k = 1, 2, ...., N, (45)

The synchronization of this system with T-S fuzzy theory has already studied in [19].

Theorem 3.6. Assume that (1) and (2) holds. Then the T-S fuzzy singular Markovian jumping error dynamical
network (11) is asymptotically stable. For a given scalars τ1 > 0, τ2 > 0, d1 > 0 and d2 > 0, if there exist nonnegative
constants αk, nonnegative definite matrices Pki = diag{Pk1,Pk2, ....,PkN} > 0, Qkq > 0, Mkq > 0 (q = 1, 2, 3, 4),
Nk1 > 0, Nk2 > 0 and positive diagonal matrices Sk such that the following LMIs hold ∀ i ∈ S:

ETPki = PkiE ≥ 0, Ψ̂i < 0, i = 1, 2, ...., N, (46)

Ψ̂i =



Υ̂11 Υ̂12 0 Υ̂14 0 Υ̂16
2
τ1
ETNk1E Pki Υ̂19

∗ −(1− d)Qk2 0 0 0 0 0 0 Υ̂29

∗ ∗ Υ̂33 0 0 0 0 0 0

∗ ∗ ∗ Υ̂44
1
τ2
ETMk2E 0 0 0 0

∗ ∗ ∗ ∗ Υ̂55 0 0 0 0

∗ ∗ ∗ ∗ ∗ Υ̂66 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Υ̂77 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −αkSk I

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2Pki +R



, (47)

where

Υ̂11 = Pki(Ai + c1λkΓ1i − c4σkΓ3) + (Ai + c1λkΓ1i − c4σkΓ3)TPki +

m∑
j=1

πijPkj + Qk1 + Qk3

+ τ22Mk3 + τ21Mk4 −
1

τ1
ETMk1E− 2ETNk2E + αk(N − 1)lSk, Υ̂12 = Pkic2Γ2iλk + Pkic3Dλk,

Υ̂14 =
1

τ1
ETMk1E, Υ̂16 =

2

τ2
ETNk2E, Υ19 = (Ai + c1Γ1iλk − c4σkΓ3)Pki, Υ̂29 = (c2Γ2iλk + c3Dλk)Pki,

Υ̂33 = −(1− d1)(Qk1 −Qk2), Υ̂44 = Qk4 −Qk3 −
1

τ1
ETMk1E−

1

τ2
ETMk2E, Υ̂55 = −Qk4 −

1

τ2
ETMk2E,

Υ̂66 = −Mk3 −
2

τ22
ETNk2E, Υ̂77 = −Mk4 −

2

τ21
ETNk1E, R = ET (τ1Mk1 + τ2Mk2)E

+
τ21
2
ETNk1E +

τ22
2
ETNk2E.
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Proof. By considering the inequality −PkiR
−1Pki ≤ −2Pki +R, the LMI (46) becomes,

Ψ̂i =



Υ̂11 Υ̂12 0 Υ̂14 0 Υ̂16
2
τ1

ETNk1E Pki Υ̂19

∗ −(1− d)Qk2 0 0 0 0 0 0 Υ29

∗ ∗ Υ̂33 0 0 0 0 0 0

∗ ∗ ∗ Υ̂44
1
τ2

ETMk2E 0 0 0 0

∗ ∗ ∗ ∗ Υ̂55 0 0 0 0

∗ ∗ ∗ ∗ ∗ Υ̂66 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Υ̂77 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −αkSk I

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −PkiR
−1Pki



< 0. (48)

Then a congruence transformation of diag{I, I, I, I, I, I, I, I,P−1ki } to the LMI (47), we obtain the LMI (20). The
rest of the proof follows directly from Theorem 3.1.

Remark 3.7. The Pki appear in Theorem 3.1 and Theorem 3.2 can be chosen with give E. We only need EPT
ki = PkiE

to be positive semi-definite.

4 Numerical example

In this section, we present a numerical model to determine the performance of the proposed synchronization criteria
given in this paper.

Example 4.1. Consider a three-dimensional Markovian jumping T-S fuzzy singular complex dynamical networks with
additive time varying delays and pinning control with 3-nodes:
Fuzzy Rule 1:

IF {θ1 is F11} and ..... and {θg is F1g} THEN

Eż1(t) = (A1 + a1Γ11λ1 − a4σ1Γ3)z1(t) + h1(t) + (a2Γ21λ1 + a3Dλ1)z1(t− τ(t)), (49)

Fuzzy Rule 2:

IF {θ1 is F21} and ..... and {θg is F2g} THEN

Eż2(t) = (A2 + a1Γ12λ2 − a4σ2Γ3)z2(t) + h2(t) + (a2Γ22λ2 + a3Dλ2)z2(t− τ(t)), (50)

where zk(t) = (zTk1, z
T
k2)T , fk(t) = (tanh(zk1(t), t), tanh(zk2(t), t))T furthermore, the applicable parameters are given as

follows:

E =

 1 0

0 0

 , A1 =

 −2 1

−5 6

 , Γ11 =

 2 0

0 2

 , Γ21 =

 8 0

0 8

 ,
Γ3 =

 7 0

0 7

 , A2 =

 −4 3

3 −4

 , Γ12 =

 5 0

0 5

 , Γ22 =

 6 0

0 6

 ,

Π =

 −3 3

4 −4

 , D =


−2 1 1

1 −1 0

1 0 −1

 , U1 =

 2 4

1 −1

 , U2 =

 −3 1

1 −1

 .
Let us consider τ1(t) = 0.2 + 0.2sin(0.5t), τ2(t) = 0.5 + 0.5sin(0.5t), a1 = 0, a2 = 0.1, a3 = 0.2, a4 = 0.3, σ1 = 4,
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Table 1: Maximum admissible upper bounds for delays τ2 with different values of τ1.

τ1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

τ2 2.2564 2.2465 2.1321 2.0005 1.9005 1.8201 1.7356

σ2 = 5, σ3 = 3, τ1 = 0.2, τ2 = 0.5 and the eigenvalues of D are found to be λ1 = 0, λ2 = −3, λ3 = −1. The maximum
admissible upper bounds τ2 obtained for different values of τ1 are listed in Table 1. Then by utilizing the Matlab LMI
Toolbox, we solve the LMIs in Theorem 3.2, we acquire the feasible solutions for k = 1, and i = 1 as follows:

P11 =

 0.0132 −0.0035

−0.0035 0.0867

 , Q11 =

 1.8966 −0.0967

−0.0967 1.9157

 , Q12 =

 1.1321 −0.0693

−0.0693 1.1997

 ,
Q13 =

 −2.8181 −0.1750

−0.1750 −2.4924

 , Q14 =

 0.6557 0.0774

0.0774 1.2471

 , M11 =

 −0.0081 −0.0004

−0.0004 0.0000

 ,
M12 =

 −0.3658 −0.0166

−0.0166 0.0000

 , M13 =

 0.5321 −0.0138

−0.0138 0.6550

 , M14 =

 0.7285 −0.0016

−0.0016 0.7110

 ,
N11 =

 −0.0103 0.0693

0.0693 0.0022

 , N12 =

 0.0176 0.0023

0.0023 0.0000

 , S1 =

 2.1080 0

0 2.1080

 .
Meanwhile, this example shows that all the conditions stated in Theorem 3.2 have been satisfied and hence system (11)
achieve synchronization through the pinning control u(t) with the given parameters in the sense of Definition 2.1.

5 Conclusions

In this paper, we mainly discuss the synchronization for singular complex dynamical networks with Markovian jumping
and additive time-varying delays using pinning control dependent on T–S fuzzy theory. By utilizing a new Lyapunov-
Krasovskii functional with contain triple integral terms and utilizing some integral inequalities we demonstrated that
the stability problem of Markovian jumping singular complex dynamical networks (MJSCDNs) system is resolvable if a
set of linear matrix inequalities (LMIs) are feasible. A brought together LMI approach was created to build up sufficient
conditions for the MJSCDNs synchronize have been accomplished by means of pinning control. Finally a numerical
example is provided to given to demonstrate the effectiveness of the proposed results. The thought and approach
created in this paper can be further generalized to deal with some other problems on impulsive control, sampled data
control and especially for the synchronization of singular complex dynamical networks. This will be our near future
topics of our research.
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