تعداد نشریات | 27 |
تعداد شمارهها | 556 |
تعداد مقالات | 5,734 |
تعداد مشاهده مقاله | 8,018,291 |
تعداد دریافت فایل اصل مقاله | 5,389,863 |
ارزیابی آسیبپذیری آبخوان دشت قزوین با استفاده از روش DRASTIC-AHP مبتنی بر سیستم اطلاعات جغرافیایی | ||
مخاطرات محیط طبیعی | ||
مقاله 9، دوره 10، شماره 29 - شماره پیاپی 3، آذر 1400، صفحه 145-160 اصل مقاله (1.09 MB) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/jneh.2020.34024.1659 | ||
نویسندگان | ||
عبدالله طاهری تیزرو ![]() ![]() | ||
1دانشیار گروه مهندسی آب، دانشگاه بوعلیسینا | ||
2دانشجوی دکتری مهندسی منابع آب، دانشگاه بوعلیسینا | ||
3دانشجوی دکتری مهندسی منابع آب، دانشگاه بوعلی سینا | ||
چکیده | ||
آلودگی آبهای زیرزمینی به دلیل فعالیتهای بشری یکی از جدی ترین مشکلات زیست محیطی در مناطق صنعتی و کشاورزی است. آب زیرزمینی یکی از منابع اصلی آب شرب در کشور ما است لذا بررسی آسیب پذیری این منابع اهمیت زیادی دارد. در این تحقیق روش اصلاح شده DRASTIC براساس سیستم اطلاعات جغرافیایی برای مطالعه آسیب پذیری آب زیرزمینی در دشت قزوین استفاده شده است. با استفاده از روش تحلیل سلسله مراتبی ضرایب مربوط به هر پارامتر از روش DRASTIC تعیین شدند. از تحلیل رگرسیون خطی برای ارزیابی ارتباط آماری بین غلظت آلایندههای آب زیرزمینی و مناطق آسیبپذیر آن استفاده شد. نقشهی آسیب پذیری حاصله نشان میدهد که مقادیر بدست آمده از روش DRASTIC با شاخصهای کیفی مورد نظر تطابق نسبی دارد و نتایج مشابه برای روش DRASTIC-AHP نیز بدست آمد. مقایسه نتایج بدست آمده با شاخصهای کیفی آب زیرزمینی نشان داد که در شرق منطقه آسیب-پذیری و پتانسیل آلودگی هر دو سطح بالایی داشته و خطر آلودگی آب زیرزمینی در این مناطق از سایر نقاط بیشتر است. با برقراری رابطه رگرسیون میان شاخصهای کیفی آب زیرزمینی و روشهای ارزیابی آسیبپذیری به تفکیک میزان دقت روشها بررسی شد. مشخص گردید که روش DRASTIC-AHP از دقت بالاتری نسبت به روش سنتی آن برخوردار است و تطابق بیشتری با شاخصهای کیفی واقع شده در منطقه دارد. | ||
کلیدواژهها | ||
آب زیرزمینی؛ آلودگی؛ آب زمینشناسی؛ تحلیل سلسله مراتبی | ||
مراجع | ||
اختری، یوسف. (1386). ارزیابی مدل بالقوه آلودگی آبخوان زویرچری و خران با استفاده از مدل دراستیک. پایاننامه کارشناسی ارشد. گروه زمین شناسی، دانشگاه شهید چمران اهواز. تاکی، رضوان؛ خیاط خلقی، مجید؛ روشنی، احسان. (1388). آنالیز حساسیت روش شاخص-همپوشانی DRASTIC در فرآیند آسیب پذیری سفره آب زیرزمینی (بررسی موردی: دشت قزوین). مجله مرتع و آبخیزی (منابع طبیعی ایران)، ۶۲ (۳): 353-362. جوادی، سامان؛ کاوهکار، ندا؛ موسوی زاده، محمدحسن؛ محمدی، کوروش. (1389). اصلاح مدل DRASTIC با استفاده از اندازهگیریهای نیترات در مناطق کشاورزی در طرح آسیبپذیری آبهای زیرزمینی، فصلنامه بین المللی علوم و فناوری کشاورزی، دوره 13، شماره2; 239 -249. https://jast.modares.ac.ir/article-23-10411-en.html&sw=Drastic حبیبی، آرش؛ ایزدیار، صدیقه؛ سرافرازی، اعظم. (1393). فرایند تحلیل سلسلهمراتبی AHP. تصمیمگیری چندمنظوره فازی. آذرسیمای دانش. دفترمطالعات آب منطقهای استان قزوین.(1389). سالنامه هواشناسی قزوین سال 1388. سازمان هواشناسی کشور. دفتر مطالعات آب منطقهای استان قزوین.(1397). سالنامه هواشناسی قزوین در سال 96-97. سازمان هواشناسی کشور. عزیزی مبصر، جوانشیر؛ مسعودلک، مهسا؛ رسولزاده، علی. (۱۳۹۷). ارزیابی آسیبپذیی آلودگی آب زیرزمینی دشت ارومیه با استفاده از مدلهای دراستیک و دراستیک اصلاح شده. تحقیقات منابع آب ایران، ۱۴ (۵): ۱۹۳-۲۰۴.http://iwrr.sinaweb.net/article_66469.html ناصری، حمیدرضا؛ صارمینژاد، فردوس. (1390). مقایسه ارزیابی آسیبپذیری آبخوان به روشهای DRASTIC و منطق فازی، مطالعه موردی: دشت گل گیر مسجد سلیمان. جغرافیای طبیعی لارستان، 4 (11): 17-34. Al-Adamat, R. A., Foster, I. D., & Baban, S. M. (2003). Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Applied Geography, 23(4), 303-324. https://doi.org/10.1016/j.apgeog.2003.08.007 . Aller, L. (1985). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency. Awawdeh, M. M., & Jaradat, R. A. (2010). Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arabian Journal of Geosciences, 3(3), 273-282. https://doi.org/10.1007/s12517-009-0074-9 . Bhushan, N., & Rai, K. (2007). Strategic decision making: applying the analytic hierarchy process. Springer Science & Business Media. Bhushan, N., & Rai, K. (2007). Strategic decision making: applying the analytic hierarchy process. Springer Science & Business Media. Chuang, P. T. (2001). Combining the analytic hierarchy process and quality function deployment for a location decision from a requirement perspective. The International Journal of Advanced Manufacturing Technology, 18(11), 842-849. https://doi.org/10.1007/s001700170010 . Doerfliger, N., Jeannin, P. Y., & Zwahlen, F. (1999). Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology, 39(2), 165-176. https://doi.org/10.1007/s002540050446 . Gogu, R. C., & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental geology, 39(6), 549-559. https://doi.org/10.1007/s002540050466 . Guo, Q., Wang, Y., Gao, X., & Ma, T. (2007). A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan basin, northern China. Environmental Geology, 52(5), 923-932. https://doi.org/10.1007/s00254-006-0534-4 . Hamerlinck, J. D., & Arneson, C. S. (1998). Wyoming groundwater vulnerability assessment handbook volume 1. Background, model development and aquifer sensitivity analysis. Laramie, WY: University of Wyoming, Spatial Data and Visualization Center Report, 98-01. Kalinski, R. J., Kelly, W. E., Bogardi, I., Ehrman, R. L., & Yaniamoto, P. D. (1994). Correlation between DRASTIC vulnerabilities and incidents of VOC contamination of municipal wells in Nebraska. Groundwater, 32(1), 31-34. https://doi.org/10.1111/j.1745-6584.1994.tb00607.x . Lake, I. R., Lovett, A. A., Hiscock, K. M., Betson, M., Foley, A., Sünnenberg, G., ... & Fletcher, S. (2003). Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. Journal of Environmental Management, 68(3), 315-328. https://doi.org/10.1016/S0301-4797(03)00095-1 . Lasserre, F., Razack, M., & Banton, O. (1999). A GIS-linked model for the assessment of nitrate contamination in groundwater. Journal of hydrology, 224(3-4), 81-90. https://doi.org/10.1016/S0022-1694(99)00130-4 . Lee, S. (2003). Evaluation of waste disposal site using the DRASTIC system in Southern Korea. Environmental Geology, 44(6), 654-664. https://doi.org/10.1007/s00254-003-0803-4 . Martínez-Bastida, J. J., Arauzo, M., & Valladolid, M. (2010). Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution. Hydrogeology Journal, 18(3), 681-698. https://doi.org/10.1007/s10040-009-0549-5 . McLay, C. D. A., Dragten, R., Sparling, G., & Selvarajah, N. (2001). Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollution, 115(2), 191-204. https://doi.org/10.1016/S0269-7491(01)00111-7 . Meinardi, C. R., Beusen, A. H. W., Bollen, M. J. S., Klepper, O., & Willems, W. J. (1995). Vulnerability to diffuse pollution and average nitrate contamination of European soils and groundwater. Water Science and Technology, 31(8), 159-165. https://doi.org/10.1016/0273-1223(95)00368-W . Rahman, A. (2008). A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied geography, 28(1), 32-53. https://doi.org/10.1016/j.apgeog.2007.07.008 . Rupert, M. G. (1999). Improvements to the DRASTIC ground-water vulnerability mapping method (No. 066-99). US Geological Survey. https://doi.org/10.3133/fs06699 . Secunda, S., Collin, M. L., & Melloul, A. J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region. Journal of environmental management, 54(1), 39-57. https://doi.org/10.1006/jema.1998.0221 . Sener, E., & Davraz, A. (2013). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal, 21(3), 701-714. https://doi.org/10.1006/jema.1998.0221 . Şener, Ş., Şener, E., Nas, B., & Karagüzel, R. (2010). Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste management, 30(11), 2037-2046. https://doi.org/10.1016/j.wasman.2010.05.024 . Simsek, C., Kincal, C., & Gunduz, O. (2006). A solid waste disposal site selection procedure based on groundwater vulnerability mapping. Environmental geology, 49(4), 620-633. https://doi.org/10.1007/s00254-005-0111-2 . Thapinta, A., & Hudak, P. F. (2003). Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand. Environment International, 29(1), 87-93. https://doi.org/10.1016/S0160-4120(02)00149-6 . Tilahun, K., & Merkel, B. J. (2010). Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environmental Earth Sciences, 59(7), 1485-1496. https://doi.org/10.1007/s12665-009-0134-1 . Umar, R., Ahmed, I., & Alam, F. (2009). Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of Central Ganga Plain, Western Uttar Pradesh. Journal of the Geological Society of India, 73(2), 193-201. https://doi.org/10.1007/s12594-009-0075-z . Varol, S. O., & Davraz, A. (2010). Hydrogeological investigation of Sarkikaraagac Basin (Isparta, Turkey) and groundwater vulnerability. Water international, 35(2), 177-194. https://doi.org/10.1080/02508061003663445 . Wang, Y., Merkel, B. J., Li, Y., Ye, H., Fu, S., & Ihm, D. (2007). Vulnerability of groundwater in Quaternary aquifers to organic contaminants: a case study in Wuhan City, China. Environmental Geology, 53(3), 479-484. https://doi.org/10.1007/s00254-007-0669-y . Zou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and simple linear regression. Radiology, 227(3), 617-628. https://doi.org/10.1148/radiol.2273011499. | ||
آمار تعداد مشاهده مقاله: 151 تعداد دریافت فایل اصل مقاله: 97 |