![سامانه مدیریت نشریات علمی دانشگاه سیستان و بلوچستان](./data/logo.png)
تعداد نشریات | 32 |
تعداد شمارهها | 735 |
تعداد مقالات | 7,132 |
تعداد مشاهده مقاله | 11,592,456 |
تعداد دریافت فایل اصل مقاله | 7,946,777 |
Multi channels sEMG-based joint angles estimation of lower limbs utilizing bidirectional recurrent neural network | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 2، دوره 4، شماره 2، تیر 2021، صفحه 157-165 اصل مقاله (1.12 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2020.33929.1263 | ||
نویسندگان | ||
Rohollah Hasanzadeh Fereydooni* ؛ Hassan Siahkali؛ Heidar Ali Shayanfar؛ Amir Hooshang Mazinan | ||
Department of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
چکیده | ||
Nowadays, rehabilitative robots that have received more attention in the field of rehabilitation can help patients in the rehabilitation training and reduce therapist workload. This paper suggests the use of surface electromyography (sEMG) signals and a bidirectional neural network (BRNN) for the estimation of the joint angles of lower limbs. The input of BRNN is the preprocessed sEMG signals and its outputs are the estimated joint angles of knee, ankle and hip. In order to prove the usefulness of the bidirectional neural network, four normal and healthy subjects and two spinal cord injury (SCI) patients take a part in the experimental tests. The healthy subjects exercise two movement modes containing the leg extension and the treadmill at various loads and speeds, while the SCI subjects conduct only the treadmill exercise. In order to record useful information, seven leg muscles were used and then the hip, knee and ankle joint angles were acquired at the same time. The experimental results show the satisfactory performance of the proposed method in the estimation of joint angles by employing surface electromyography signals for both groups. The proposed estimation method can be used for controlling the rehabilitation robot of SCI subjects based on sEMG signals. | ||
کلیدواژهها | ||
joint angle estimation؛ sEMG signals؛ rehabilitation robots؛ bidirectional recurrent neural network | ||
مراجع | ||
[1] Yang, T., Gao, X., Gao, R., Dai, F., & Peng, J. (2019). A Novel Activity Recognition System for Alternative Control Strategies of a Lower Limb Rehabilitation Robot. Applied Sciences, 9(19), 3986. [2] Qin, F., Zhao, H., Zhen, S., Sun, H., & Zhang, Y. (2020). Lyapunov Based Robust Control for Tracking Control of Lower Limb Rehabilitation Robot with Uncertainty. International Journal of Control, Automation and Systems, 18(1), 76-84. [3] Wang, A., Hu, N., Yu, J., Liao, W., Zhang, J., Wu, X., & Pei, C. (2019, August). Research on robot control system of lower limb rehabilitation robot based on human gait comfort. In 2019 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 34-39). IEEE. [4] M. Lotze, C. Braun, N. Birbaumer, S. Anders, L.G. Cohen, Motor learning elcited by voluntary, Brain 126 (2003) 866–872. [5] L.L. Cai, A.J. Fong, C.K. Otoshi, Y. Liang, J.W. Burdick, R.R. Roy, V.R. Edgerton, Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning, Neuroscience 26 (4) (2006) 10564–10568. [6] G. Rosati, P. Gallina, S. Masiero, Design implementation and clinical tests of a wire-based robot for neurorehabilitation, IEEE Trans. Neural Syst. Rehabil. Eng. 15 (4) (2007) 560–569. [7] G. Kamen, D. Gabriel, Essentials of Electromyography, Human Kinetics Publishers, USA, 2009. [8] M.J. Zwarts, G. Drost, D.F. Stegeman, Recent progress in the diagnostic use of surface EMG for neurological diseases, J. Electromyogr. Kinesiol. 10 (5) (2000) 287–291. [9] S.L. Pullman, D.S. Goodin, A.I. Marquinez, S. Tabbal, M. Rubin, Clinical utility of surface EMG: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology, Neurology 55 (2) (2000) 171–177. [10] C. Cipriani, F. Zaccone, S. micera, M.C. Carrozza, On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction, IEEE Trans. Robot. 24 (1) (2008) 170–184. [11] T.A. Kuiken, G. Li, B.A. Lock, R.D. Lipschutz, L.A. Miller, K.A. Stubblefifield, K.B. Englehart, Targeted muscle reinnervation for real-time myoelectric control of multifunction artifificial arms, J. Am. Med. Assoc. 301 (6) (2009) 619–628. [12] Y. Oonishi, O. Sehoon, Y. Hori, A new control method for power-assisted wheelchair based on the surface myoelectric signal, IEEE Trans. Ind. Electron. 57 (9) (2010) 3191–3196. [13] F. Zhang, P.F. Li, Z.G. hou, X.L. Xie, Y.X. Chen, Q.L. Li, M. Tan, An adaptive RBF neural network control strategy for lower limb rehabilitation robot, ICIRA 2010 (2010) 417–427. [14] K. Momen, S. Krishnan, T. Chau, Real-time classifification of forearm electromyographic signals corresponding to user-selected intensional movements for multifunction prosthesis control, IEEE Trans. Neural Syst. Rehabil. Eng. 15 (4) (2007) 535–542. [15] Y.H. Liu, H.P. Huang, C.H. Weng, Recognition of electromyographic signals using cascaded kernel learning machine, IEEE Trans. Mechatron. 12 (3) (2007) 253–264. [16] D. Tkach, H. Huang, T. Kuiken, Study of stability of time-domain features for electromyographic pattern recognition, J. Neuroeng. Rehabil. 5 (2010) 7–21. [17] O. Fukuda, T. Tsuji, M. kaneko, A. Otsuka, A human-assisting manipulator teleoperated by EMG signals and arm motions, IEEE Trans. Robot. Autom. 19 (2) (2003) 210–222. [18] S. Yu, M.H. Fisher, A. Wolczowski, G.D. Bell, D.J. Burn, R.X. Gao, Towards an EMG-controled prosthetic using a 3-D electromagnetic positioning system, IEEE Trans. Instrum. Meas. 56 (1) (2007) 178–186. [19] N.A. Shrirao, N.P. Reddy, D.R. Kosuri, Neural network committees for finger joint angle estimation from surface EMG signals, Biomed. Eng. OnLine 8 (2) (2009) 1–11. [20] A.V. Hill, The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. Lond. B 126 (1938) 136–195. [21] C. Fleischer, A. Wege, K. Kondak, G. Hommel, Application of EMG signals for controlling exoskeleton robots, Biomed. Tech. 51 (5) (2006) 314–319. [22] C.A.M. Doorenbosch, J. Harlaar, Accuracy of a practicable EMG to force model for knee muscles, Neurosci. Lett. 368 (1) (2004) 78–81. [23] G.L. David, F.B. Thor, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, J. Biomech. 36 (2003) 765–776. [24] Q. Shao, N.B. Daniel, K. Manal, S.B. Thomas, An EMG-driven model to estimate muscle forces and joint moments in stroke patients, Comput. Biol. Med. 39 (12) (2009) 1083–1088. [25] P.K. Artemiadis, K.J. Kyriakopoulos, A switching regime model for the EMG-based control of a robot arm, IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41 (1) (2011) 53–63. [26] P.K. Artemiadis, K.J. Kyriakopoulos, EMG-based position and force estimates in coupled human-robot systems: towards EMG-controlled exoskeletons, Springer Tracts Adv. Robot. 54 (2009) 241–250. [27] K.H. Ha, H.A. Varol, M. Goldfarb, Volitional control of a prosthetic knee using surface electromyography, IEEE Trans. Biomed. Eng. 58 (1) (2011) 144–151. [28] K.K. Koo Terry, F.T. Mak Arthur, Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow, J. Electromyogr. Kinesiol. 15 (2005) 12–26. [29] Y. Masahiro, M. Masahiko, T. Kazuyo, Real time hand motion estimation using EMG signals with support vector machines, in: SICE-ICASE International Joint Conference, 2006, pp. 593–598. [30] Y. Masahiro, M. Masahiko, T. Kazuyo, Hand pose estimation using EMG signals, in: IEEE International Conference on EMBS, 2007, pp. 4830–4833. [31] N.P. Reddy, V. Gupta, Toward direct biocontrol using surface EMG signals: control of fifinger and wrist joint models, Med. Eng. Phys. 29 (2007) 398–403. [32] A. Christian, C. Cipriani, M. Controzzi, M.C. Carrozza, G. Lundborg, B. Rose ́n, F. Sebelius, Using EMG for real-time prediction of joint angles to control a prosthetic hand equipped with a sensory feedback system, J. Med. Biol. Eng. 30 (6) (2010) 399–406. [33] J. Shi, Y. Zheng, Z. Yan, SVM for estimation of wrist angle from sonomyography and sEMG signals, in: IEEE International Conference on EMBS, 2007, pp. 4806–4809. [34] K.J. Hunt, M. Munih, N.deN. Donaldson, F.M.D. Barr, Investigation of the hammerstein hypothesis in the modeling of electrically stimulated muscle, IEEE Trans. Biomed. Eng. 45 (8) (1998) 998–1009. [35] M. Schuster and K. K. Paliwal, “Bidirectional Recurrent Neural Networks,” IEEE Transactions on Signal Processing, vol. 45, pp. 2673–2681, 1997. [36] Farahani, Mohsen. "A multi-objective power system stabilizer." IEEE Transactions on Power Systems 28.3 (2012): 2700-2707. | ||
آمار تعداد مشاهده مقاله: 617 تعداد دریافت فایل اصل مقاله: 328 |