تعداد نشریات | 27 |
تعداد شمارهها | 557 |
تعداد مقالات | 5,742 |
تعداد مشاهده مقاله | 8,018,506 |
تعداد دریافت فایل اصل مقاله | 5,390,032 |
Robust Sliding Mode-based UPQC for Transient Conditions in Weak/ Islanded Networks | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 1، دوره 4، شماره 3، آبان 2021، صفحه 267-276 اصل مقاله (1.24 MB) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2020.35963.1308 | ||
نویسندگان | ||
Omid Moradi1؛ Saeed Abazari ![]() | ||
1Dept. of Eng., Shahrekord University, shahrekord, Iran | ||
2Faculty of Engineering, University of shahrekord, shahrekord, Iran | ||
3shahid teacher rajaee training university | ||
چکیده | ||
This paper proposes a nonlinear model by an optimal stabilizing controller for weak/islanded grids using a unified power quality conditioner (UPQC). The UPQC can be employed to stabilize a grid-tie inverter (GTI) or a synchronous generator (SG) with minimum control effort. The idea that GTI behavior is like the synchronous generator is implemented in this study. The research aims at using an advanced controller to reduce oscillations and achieve stability in a micro-grid. Here, the robust sliding mode controller-based UPFC is employed to design an optimal grid stabilizer. The paper considers variations in UPQC terminal voltage during the transient period of the system, unlike other articles that assume it to be constant. The performance of the proposed algorithm is evaluated by two benchmark networks. The paper presents a comparative study of transient stability in a micro-grid system under different loads. Simulation results reflect the robustness of the proposed sliding mode controller for oscillation reduction in comparison with the Lyapunov-based nonlinear optimal controller and PI controller. In addition, results show the effectiveness of the proposed nonlinear controller in controlling both GTI and SG in the micro-grid system. | ||
کلیدواژهها | ||
Micro-grid؛ Power system stability؛ Virtual synchronous generator (VSG)؛ Sliding Mode Controller (SMC) | ||
مراجع | ||
[1] M. Ashabani, J. Jung, ‘‘Synchronous Voltage Controllers: Voltage-Based Emulation of Synchronous Machines for the Integration of Renewable Energy Sources ’’, IEEE Access., 10, (8), pp 49497–49508,2020. [2] S. Kazemlou, S. Mehraeen ,‘‘Novel Decentralized Control of Power Systems With Penetration of Renewable Energy Sources in Small-Scale Power Systems’’, IEEE Trans. Power Electron., 29,(4), pp. 1–11,2014. [3] S. Wei, Y. Zhou, G. Xu, et al.:‘‘Motor-generator pair: a novel solution to provide inertia and damping for power system with high penetration of renewable energy’’, IEEE Trans. Power Syst., 32,(2), pp. 1422–1429,2017. [4] H.-P. Beck, R. Hesse,‘‘Virtual synchronous machine’’, In Proc. 9th Int.Conf. EPQU, pp. 1–6, 2007. [5] Q.-C. Zhong, G. Weiss, ‘‘Synchronverters: Inverters that mimic synchronous generators’’, IEEE Trans. Ind. Electron., 58,(4),pp. 1259–1267, 2011. [6] J. Driesen, K. Visscher, ‘‘Virtual synchronous generators’’, In Proc.IEEE Power Energy Soc. Gen. Meeting Convers. Del. Elect. Energy 21stCentury, pp. 1–3, 2008. [7] S. D’Arco, J.A. Suul, ‘‘Virtual synchronous machines—Classificationof implementations and analysis of equivalence to droop controllers for microgrids’’, In Proc. IEEE Grenoble Power Tech, pp. 1–7, 2013. [8] Q.-C. Zhong, ‘‘Virtual synchronous machines: A unified interface for smart grid integration’’, IEEE Power Elec. M, 3,(4), pp. 18-27, 2014. [9] M. P. N. Van Wesenbeeck, S. W. H. De Haan, P. Varela, et al.:‘‘Grid tied converter with virtual kinetic storage’’, IEEE Bucharest Power Tech, pp. 1–7, 2009. [10] M. Ebrahimi, S.A. Khajehoddin, ‘‘An improved damping method for virtual synchronous machines ’’, IEEE Trans. On sustainable Energy, 10, (3), pp. 1491–1500, 2019. [11] Y. Ma, W. Cao. L., F. Wang, ‘‘Virtual Synchronous Generator Control of Full Converter Wind Turbines with Short Term Energy Storage’’,IEEE Trans. on Industrial Electronics,64, (11),pp. 8821–8831, 2017. [12] O. Mo, S. D’Arco, ‘‘Evaluation of Virtual Synchronous Machines with Dynamic or Quasi-Stationary Machine Models’’, IEEE Trans. on Industrial Electronics, 64, (7), pp. 5952–5962, 2017. [13] D. Chen, Y. Xu, ‘‘Integration of DC Microgrids as Virtual Synchronous Machines into the AC Grid’’,IEEE Trans. on Industrial Electronics, 64, (9), pp. 7455–7466, 2017. [14] H. Wang, ‘‘ A unified model for the analysis of FACTS devices indamping power system oscillations. III. Unified power flow controller’’,IEEE Trans. Power Del.,15, (3), pp. 978–983, 2000. [15] C.-T. Chang, Y.-Y. Hsu, ‘‘ Design of UPFC controllers and supplementarydamping controller for power transmission control and stabilityenhancement of a longitudinal power system’’, IEE Proc.-Generat.,Transmiss., Distrib., 149,(4), pp. 463–471, 2002. [16] A. Mohanty, S. Patra, P. K. Ray, ‘‘Robust fuzzy-sliding mode based UPFCcontroller for transient stability analysis inautonomous wind-diesel-PV hybrid system’’, IET Gener. Transm. Distrib., 10, (5), pp. 1248–1257, 2016. [17] C. Leonardo, S. Sérgio, O. Azauri, et al.: ‘‘Power Flow and Stability Analyses of a Multifunctional Distributed Generation System Integrating a Photovoltaic System With Unified Power Quality Conditioner’’, IEEE Transactions on Power, 34, (7), pp 6241-6256, 2019. [18] L. Shubh, G. Sanjib, ‘‘Modelling and allocation of open-UPQC-integrated PV generation system to improve the energy efficiency and power quality of radial distribution networks ’’, IET Renewable Power Generation, 12, (5), pp 605-613, 2018. [19] C. Saurav, D. Anubrata, A. Sandeep, et al.: ‘‘Adaptive shunt filtering control of UPQC for increased nonlinear loads’’, IET Power Electronics, 12, (2), pp 330-336, 2019. [20] P.W. Sauer and M. A. Pai, “Power system dynamics and stability,” Stipess, Jan. 2007. [21] M. Abido, ‘‘Parameter optimization of multi machine power system stabilizers using genetic local search’’, Int JElectr Power Energy Syst, pp.785–794, 2001. [22] Y. Ma, W. Cao. L., F. Wang, ‘‘Improving of Transient Stability of Power Systems Using UPFC’’,IEEE Trans. on Power Delivery, 20, (2),pp. 1677–1682, 2005. [23] H. Nazaripouya and S. Mehraeen, “Control of UPFC using Hamilton–Jacobi–Bellman formulation based neural network,” in Proc. IEEE PES General Meeting, San Diego, CA, USA, pp. 1–8, 2012. [24] A. Mohanty, S. Patra, A. Mohamed, et al: ‘‘Robust fuzzy-sliding mode based UPFC controller for transient stability analysis in autonomous wind-diesel-PV hybrid system’ IET Gener., Transm. &Distrib., pp.1–10, 2016. [25] H. Nazaripouya, S. Mehraeen, ‘‘Modeling and Nonlinear Optimal Control of Weak/Islanded Grids Using FACTS Device in a Game Theoretic Approach’’, IEEE Trans. Power Electron. 29,(4), pp 1–11, 2015. [26] Z. Saad-Saoud, M.L. Lisboa, J.B. Ekanayake, et al.,: ‘‘Application of STATCOMs to wind farms’’, IEE Proc.-Generat., Transmiss., Distrib., 145,(5), pp. 511–516, 1998. [27] M. A. Kamarposhti, '' Optimal Control of Islanded Micro grid Using Particle Swarm Optimization Algorithm'', IECO, 1(1), pp.53-60, 2018. [28] A, Ajami. A.M., Shotorbani, M.P., Aagababa,: ‘Application of the direct Lyapunov method for robust finite-time power flow control with a unified power flow controller’, IET GT&D, 6, (9), pp. 822–830, 2012. | ||
آمار تعداد مشاهده مقاله: 178 تعداد دریافت فایل اصل مقاله: 210 |