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Abstract

Dombi and Baczyński presented a new approach to the problem of implication operation by introducing the preference
implication, which has very advantageous properties. In this paper, it is presented how the preference implication is
connected with soft inequalities and with sigmoid functions. Utilizing this connection the preference implication-based
preference measure for two fuzzy numbers is introduced and its key properties, including the reciprocity, are described.
Then, the exact expression for computing the new preference measure for trapezoidal fuzzy numbers is presented. Here,
using the new preference measure, two crisp relations over trapezoidal fuzzy numbers are introduced. It is shown that
one of them is a strict (but not a total) order relation, and the other one is an equivalence relation. The strict order
relation can be used to rank comparable fuzzy numbers, while the equivalence relation, which we call the indifference
relation, expresses that the order of some fuzzy numbers is indifferent. These two crisp relations can be used to rank
a collection of trapezoidal fuzzy numbers. Lastly, the proposed ranking method is compared with some well-known
existing fuzzy number ranking methods.

Keywords: Preference implication, preference measure, trapezoidal fuzzy numbers, strict order relation, equivalence
relation.

1 Introduction

In many situations, outcomes of multi-criteria decision making are fuzzy numbers. Therefore, the ranking of fuzzy
numbers is undoubtedly one of the most important topics in the theory and practice of fuzzy decision-making. Since
it is a challenging problem, it has attracted the interest of many researchers. There is a large number and a high
diversity of methods and approaches available for tackling the problem of raking fuzzy numbers (see, e.g. [1, 6, 10,
11, 14, 26, 36, 37, 38]). Zumelzu et al. studied more than two hundred partial order relations for fuzzy numbers (see
[44]). Huynh et al. [24] introduced a probability-based methodology for comparing and ranking fuzzy numbers. Wang
[35] utilized a relative preference relation for ranking triangular and trapezoidal fuzzy numbers. An inclusion index
and bitset encoding-based approach was presented by Boulmakoul et al. [8]. By using a synthesis of fuzzy targets and
the application of Dempster–Shafer theory, Chai et al. [9] developed an extended ranking method for fuzzy numbers.
Chutia and Chutia [16] presented a value and ambiguity-based method for ranking parametric forms of fuzzy numbers.
Akbari and Hesamian [4] proposed a class of signed-distance measures for interval-valued fuzzy numbers based on
specific bivariate functions, called kernels, and β-values of interval-valued fuzzy numbers. Yu et al. [41] proposed a
new epsilon-deviation degree approach which is based on the left and right areas of a fuzzy number and the concept of
a centroid point. This method was developed further by Chutia [15]. Yatsalo and Mart́ınez [40] proposed an approach
to ranking fuzzy numbers and a fuzzy rank acceptability analysis that provides a degree of confidence for all ranks.
Hesamian and Bahrami [23] introduced a credibility theory oriented preference index for ranking fuzzy numbers. Roldán
López de Hierro et al. [33] demonstrated how a ranking method for fuzzy numbers can be applied to economic data.
Gu and Xuan [22] proposed a possibility theory-based approach for ranking fuzzy numbers. Khorshidi and Nikfalazar
[27] used a similarity measure for generalized fuzzy numbers and its application to fuzzy risk analysis. Rahmani et al.
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[31] introduced a method for the defuzzification and ranking of fuzzy numbers based on the statistical beta distribution.
Also, there is a lot of interest in ranking intuitionistic fuzzy numbers (see, e.g. [21, 29, 30, 32, 34, 43]).

In our view, the fuzzy number ranking methods can be categorized into two main classes. One of these two classes
contains the methods that are founded on defuzzification, while the other class includes procedures that compare fuzzy
numbers using preference relations. Both approaches have their advantages and disadvantages. The defuzzification-
based approaches are the simpler and easier, but the defuzzification, which is often founded on heuristics, leads to the
loss of fuzzy messages. The preference relation-based pair-wise comparisons are more complex procedures, but they
preserve the fuzzy messages. Yuan [42] supposed that a fuzzy ranking method had to present preference relation in
fuzzy terms. Wang [35] also emphasized that a fuzzy preference relation, through a membership function, represents a
preference degree. It should be added that in a recent seminal paper by Zumelzu et al. [44], the authors pointed out
that among more than two hundred partial order relations for fuzzy numbers studied, they found just a few that are
total orders. They introduced and analyzed the notion of admissible orders for fuzzy numbers with respect to a partial
order.

In this study, we will utilize the preference implication that has been recently introduced by Dombi and Baczyński
(see [18]). They indicated that the implication is closely related to the preference relation used in multi-criteria decision
making. Here, we will show how the preference implication is connected with soft inequalities and explain why we will
model soft inequalities by sigmoid functions. Utilizing this connection, we will propose the preference implication-based
preference measure for two fuzzy numbers, demonstrate its key properties including the reciprocity, and apply it to
trapezoidal fuzzy numbers. Next, we will give the formulas which the new preference measure for trapezoidal fuzzy
numbers can be readily computed with. It is worth noting that comparing two fuzzy numbers may not merely mean
that one of them is preferred over the other. The comparison should also be able to capture the situation where the
order of two fuzzy numbers cannot be judged; and so, the order of these two fuzzy numbers may be considered as
being indifferent. In our approach, using the proposed preference measure, we will introduce two crisp relations over
a collection of trapezoidal fuzzy numbers and discuss their main algebraic properties. We will show that one of these
two crisp relations is a strict, but not a total, order relation; and the other one is an equivalence relation. Here, we
will consider two fuzzy numbers as being comparable, when their order can be unambiguously determined. Also, we
will show that our strict order relation can be used to rank comparable fuzzy numbers, while our equivalence relation,
which we will call the indifference relation, can be utilized to express the view that the order of some fuzzy numbers is
indifferent. Hence, these two relations together may be treated as an alternative to admissible orders for fuzzy numbers
[44]. Here, we will show how these two crisp relations can be used to rank a collection of trapezoidal fuzzy numbers.
Also, we will compare our ranking method with some well-know existing methods.

This paper is organized as follows. In Section 2, the notions of continuous-valued logic, which we will use in this
study, are briefly described. The theoretical background of the preference implication-based preference measure is
presented in Section 3. In Section 4, the preference implication-based preference measure for two fuzzy numbers is
introduced and its key properties are discussed. Then, we apply this new preference measure to trapezoidal fuzzy
numbers. Next, in Section 5, we present two crisp relations over a collection of trapezoidal fuzzy numbers, discuss
their main algebraic properties and demonstrate how these relations can be used to rank trapezoidal fuzzy numbers.
In this section, our method is compared with some well-known existing ranking methods. Lastly, in Section 6, a short
summary of our findings is provided.

Here, we will briefly overview the notions of continuous-valued logic that will be used in this study. We will make
use of the following representation theorem of Aczél (see Chapter 6.2 in [3]), which is a characterization of associative
functions.

Theorem 1.1. A continuous and strictly increasing function F : [a, b]2 → [a, b] is associative if and only if

F (x, y) = f−1 (f(x) + f(y)) ,

where f : [a, b] → [0,∞] is a strictly decreasing or strictly increasing continuous function.

Here, f is called a generator function of F , and F is uniquely determined up to a constant multiplier of f . The
following definition of strict t-norms and strict t-conorms is based on Theorem 1.1.

Definition 1.2. We say that the function o : [0, 1]2 → [0, 1] is a strict t-norm (strict t-conorm, respectively) if and only if
o is continuous, and there exists a continuous and strictly decreasing (increasing, respectively) function f : [0, 1] → [0,∞],
which is uniquely determined up to a positive multiplicative constant, such that

o(x, y) = f−1 (f(x) + f(y)) ,

for any x, y ∈ [0, 1], and



Preference implication-based approach to ranking fuzzy numbers 53

(a) for a strict t-norm c, f = fc is strictly decreasing with fc(1) = 0 and limx→0 fc(x) = ∞ and

(b) for a strict t-conorm d, f = fd is strictly increasing with fd(0) = 0 and limx→1 fd(x) = ∞.

In Definition 1.2, function f , which is uniquely determined up to a positive multiplicative constant, is called a generator
function of the operator o.

Dombi and Baczyński [18] pointed out that there is an important connection between the implication operator and
the preference operator. Namely,

(x → y) = 1 if and only if x ≤ y,

which is the ordering property of the implication. They also argued that in everyday life, the preference and the
implication operators are used with the same reasoning method, as suggested in the following two examples:

If x < y and y < z, then x < z. If x → y and y → z, then x → z.

Here, the first example describes the transitivity property of the preference relation <. The second example, which is
based on the implication operator, demonstrates the reasoning method called the hypothetical reasoning (or hypothetical
syllogism, see [25] or [28]). Dombi and Baczyński [18] also refer to the fact that in everyday language, we do not
distinguish between these two types of reasoning. According to [18], the preference implication operator is defined as
follows.

Definition 1.3. Let ν ∈ (0, 1) and let f be a generator function of a strict t-norm; that is, f : [0, 1] → [0,∞] is a
strictly decreasing function. The preference implication pν : [0, 1]

2 → [0, 1] is given by

pν(x, y) =

{
1, if (x, y) ∈ {(0, 0), (1, 1)}
f−1

(
f(ν) f(y)f(x)

)
, otherwise,

(1)

where x, y ∈ [0, 1].

In the preference implication, the parameter ν can be interpreted as a threshold. That is, if the value of the
implication is greater than ν, then it is true. Also, based on the following proposition (see Proposition 5 in [18]),
pν(x, y) can be interpreted as the continuous logical value of the preference x < y.

Proposition 1.4. For any x, y ∈ [0, 1], we have pν(x, y) > ν if and only if x < y.

In continuous-valued logic, the generator function of the Dombi operators (see [17]) fα : (0, 1) → (0,∞) is given by

fα(x) =

(
1− x

x

)α

, (2)

where α ̸= 0. If α > 0, then fα is strictly decreasing; that is, fα is a generator function for a strict t-norm. Now, let us
utilize this function, with a fixed α = 1 parameter value, as a generator function for the preference implication operator
given in Definition 1.3. Then, after direct calculation, we get the following form of the preference implication that we
call the Dombi form of preference implication: pν,D : [0, 1]2 → [0, 1],

pν,D(x, y) =

{
1, if (x, y) ∈ {(0, 0), (1, 1)}

νy(1−x)
νy(1−x)+(1−ν)(1−y)x , otherwise,

(3)

where ν ∈ (0, 1), x, y ∈ [0, 1]. Figure 1 shows some example plots of the preference implication pν,D.
We will use the sigmoid function, which is defined as follows.

Definition 1.5. The sigmoid function σ(λ) : R → (0, 1) with the parameter λ is given by

σ(λ)(x) =
1

1 + e−λx
, (4)

where x, λ ∈ R and λ is nonzero.

Note that the sigmoid function in Eq. (4) is identical with that in Eq. (11) with c = −λ. The main properties, such as
the continuity, monotonicity, limits, role of the parameter and convexity of the sigmoid function σ(λ) are as follows.
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Figure 1: Plots of the preference implication.
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Figure 2: Plots of sigmoid functions.

Continuity. σ(λ) is a continuous function in R.

Monotonicity. If λ > 0 (λ < 0, respectively), then σ(λ) is strictly increasing (decreasing, respectively).

Limits. The σ(λ) function takes neither the value zero, nor the value 1, as these are its limits:

lim
x→+∞

σ(λ)(x) =

{
1, if λ > 0

0, if λ < 0,
lim

x→−∞
σ(λ)(x) =

{
1, if λ < 0

0, if λ > 0.

Role of the parameter. The parameter λ of σ(λ) has a semantic meaning related to the shape of the function curve.
The first derivative of σ(λ)(x) at x = 0 is λ

4 ; that is, the λ parameter determines the slope of σ(λ)(x) at x = 0. Also,

lim
λ→∞

σ(λ)(x) = χ(x),

where χ : R → [0, 1] is the Heaviside function with the half-maximum convention; that is, χ(0) = 1
2 .

Convexity. σ(λ)(x) has a single inflection point that is at x = 0. If λ > 0 (λ < 0, respectively), then σ(λ)(x) changes
from concave to convex (convex to concave, respectively) at x = 0.

Figure 2 shows some example plots of sigmoid functions that have positive λ parameter values.

2 The theoretical background of the preference implication-based pref-
erence measure

In this section, we give the theoretical explanation for why we will propose a sigmoid function-based approach (see
Definition 2.5) for modeling preferences.

2.1 The generator function-dependent sigmoid function and the preference implication

Here, we will introduce the concept of the generator function-dependent sigmoid function and show how it is connected
with the preference implication. We will also demonstrate that the well-known sigmoid function is just a special case
of the generator function-dependent sigmoid function. Namely, we will show that when the generator function is that
of the Dombi operators, then the generator function-dependent sigmoid function coincides with the traditional sigmoid
function.

Theorem 2.1. Let ν ∈ (0, 1) and let f be the generator function of the preference implication pν given in Definition
1.3. If µ : R → (0, 1) is a function such that

pν(µ(x), µ(y)) = µ(y − x), (5)

holds for any x, y ∈ R, then function µ has the form

µ(x) = f−1 (f(ν)ecx) ,

where c ∈ R is a constant.
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Proof. Let ν ∈ (0, 1) and let µ : R → (0, 1) be a function such that Eq. (5) holds for any x, y ∈ R. Then, based on the
definition for the preference implication (see Definition 1.3), we have

f−1

(
f(ν)

f(µ(y))

f(µ(x))

)
= µ(y − x),

where f is the generator function of the preference implication pν . Applying f to both sides of the previous equation,
we get

f(ν)
f(µ(y))

f(µ(x))
= f (µ(y − x)) ,

which can also be written as
f(µ(y))
f(ν)

f(µ(x))
f(ν)

=
f (µ(y − x))

f(ν)
. (6)

Since both members of Eq. (6) are positive, by taking the logarithm of them, we get

ln

(
f(µ(y))

f(ν)

)
− ln

(
f(µ(x))

f(ν)

)
= ln

(
f (µ(y − x))

f(ν)

)
. (7)

Now, let the function g : R → R be given by

g(x) = ln

(
f(µ(x))

f(ν)

)
. (8)

Then, by utilizing function g, Eq. (7) can be written as g(y)− g(x) = g(y − x) or alternatively,

g((y − x) + x) = g(y − x) + g(x). (9)

Notice that Eq. (9) is Cauchy’s functional equation; and so, g has the form g(x) = cx, where c is an arbitrary fixed
constant. Next, by substituting g(x) = cx into Eq. (8), after direct calculation, we get f(µ(x)) = f(ν)ecx and by
applying f−1 to both sides of this equation, we have

µ(x) = f−1 (f(ν)ecx) . (10)

Remark 2.2. We should emphasize that the function in Eq. (10) may be viewed as the general form of the sigmoid
function. This function depends on the generator function f . If f = fα is the generator function of the Dombi operators
given in Eq. (2) with α = 1, then for ν = 1

2 , Eq. (10) gives

µ(x) =
1

1 + ecx
, (11)

which is the same as the sigmoid function in Definition 1.5 with λ = −c.

From now on, we will use Definition 1.5 for a sigmoid function.

2.2 Soft inequalities and the preference implication

In this subsection, we will show how the preference implication is connected with soft inequalities. We will interpret
the soft inequalities as follows.

Interpretation 2.3. A continuous function σ : R → [0, 1] is said to be a representation of the soft inequality 0 < x;
that is,

σ(x) = truth(0 < x),

if σ satisfies the following requirements:

(a) σ(x) <
1

2
if and only if x < 0, (b) σ(x) =

1

2
if and only if x = 0, (c) σ(x) >

1

2
if and only if 0 < x.
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The following theorem states an important connection between the preference implication and the soft inequalities,
and explains why we will propose the sigmoid function in Eq. (4) for modeling soft inequalities.

Theorem 2.4. Let ν = 1/2. Then,

1) a function µ : R → (0, 1) is a representation of the soft inequality 0 < x and

2) for any x, y ∈ R,
pν,D(µ(x), µ(y)) = µ(y − x), (12)

holds if and only if there is λ > 0 such that µ(x) = σ(λ)(x).

Proof. Let ν = 1/2. Firstly, we will show that if µ = σ(λ) with a fixed λ > 0 constant, then µ satisfies 1) and 2). Let
µ = σ(λ) with a fixed λ > 0 constant. Then, by noting the properties of the sigmoid function σ(λ), we immediately
get that function µ satisfies the requirements for a representation of the soft inequality 0 < x (see Interpretation 2.3).
That is, µ satisfies 1). Next, since µ = σ(λ), we have µ(x), µ(y) ∈ (0, 1) for any x, y ∈ R. Now, by applying the Dombi
form of preference implication in Eq. (3) with the parameter value ν = 1/2, after direct calculation, we get

pν,D(µ(x), µ(y)) =
1

1 +
1− 1

2
1
2

1−µ(y)
µ(y)

µ(x)
1−µ(x)

=
1

1 + e−λ(y−x)
= σ(λ)(y − x) = µ(y − x). (13)

This means that µ satisfies 2).
Now, we will show that if µ satisfies 1) and 2), then for any x ∈ R, µ(x) = σ(λ)(x). Let ν = 1/2 and µ : R → (0, 1)

be a function that satisfies 1) and 2). Then, based on Theorem 2.1 and Remark 2.2, the function µ has the form

µ(x) =
1

1 + ecx
, (14)

where c ∈ R is a constant. As function µ satisfies 1) as well, µ is a strictly increasing function (see Interpretation 2.3).
Hence, by noting the properties of the sigmoid function in Eq. (4), parameter c in Eq. (14) is necessarily negative.
That is, c can be written as c = −λ, where λ > 0; and so µ(x) = σ(λ)(x) for any x ∈ R.

2.3 The preference implication-based preference measure for two numbers

Now, following Theorem 2.4, we will introduce the preference implication-based measure of the preference for two real
numbers. Utilizing the interpretation σ(x) = truth(0 < x) (see Interpretation 2.3), and the fact that

truth(x < y) = truth(0 < y − x) = σ(y − x),

the result of Theorem 2.4 can be stated as follows. For any x, y ∈ R,

pν,D(truth(0 < x), truth(0 < y)) = truth(x < y),

holds if and only if
truth(x < y) = σ(λ)(y − x),

where λ > 0 is a fixed constant. Hence, we will define the preference implication-based measure of the preference for
two real numbers as follows.

Definition 2.5. Let λ > 0 and x, y ∈ R. The preference implication-based measure µ(λ) : R2 → (0, 1) of the preference
x < y is given by

µ(λ)(x, y) =
1

1 + e−λ(y−x)
. (15)

Let dyx = y − x; that is, dyx is the signed distance between y and x. Also, dxy := x− y. Using the signed distance
dyx, the preference measure µ(λ) in Eq. (15) can be written as

µ(λ)(0, dyx) =
1

1 + e−λ(dyx−0)
=

1

1 + e−λdyx
, (16)

and similarly,

µ(λ)(dyx, 0) =
1

1 + e−λ(0−dyx)
=

1

1 + eλdyx
.



Preference implication-based approach to ranking fuzzy numbers 57

The following properties of the preference measure µ(λ) in Eq. (16) immediately follow from its definition and from
the properties of the sigmoid function:

µ(λ)(0, dyx) <
1

2
iff dyx < 0, µ(λ)(0, dyx) =

1

2
iff dyx = 0, µ(λ)(0, dyx) >

1

2
iff dyx > 0,

lim
dyx→−∞

µ(λ)(0, dyx) = 0, lim
dyx→+∞

µ(λ)(0, dyx) = 1,

µ(λ)(0, dyx) = µ(λ)(dxy, 0), (17)

µ(λ)(0, dyx) + µ(λ)(dyx, 0) = 1. (18)

Note that Eq. (18) is called the reciprocity property of µ(λ).

3 The preference implication-based preference measure for fuzzy num-
bers

Here, we will present a concept for measuring the preference between two fuzzy numbers by using the preference
implication-based preference measure that we introduced in the previous section. From now on, we will use the
following definition for an LR fuzzy number.

Definition 3.1. The LR fuzzy number A is given by the membership function µA : R → [0, 1],

µA

(
x;xL

A, x
L
A, x

R
A, x

R
A

)
=



0, if x < xL
A

lA(x), if xL
A ≤ x < xL

A

1, if xL
A ≤ x < xR

A

rA(x), if xR
A ≤ x < xR

A

0, if xR
A ≥ x,

(19)

where xL
A < xL

A ≤ xR
A < xR

A, and lA : [xL
A, x

L
A) → [0, 1) and rA : [xR

A, x
R
A) → [0, 1) are continuous, strictly increasing and

decreasing functions with the inverse functions l−1
A : [0, 1) → [xL

A, x
L
A) and r−1

A : [0, 1) → [xR
A, x

R
A), respectively.

Note that in Definition 3.1, the functions lA and rA determine the left hand side and the right hand side of the
membership function of fuzzy number A. We should add that the notion of fuzzy number is more general than that in
Definition 3.1 (see, e.g., [7, 19, 5]). In our study, for the sake of simple application to real-world data, under the notion
of fuzzy number, we will always mean a LR fuzzy number.

.
.x

.µ(x)

.A .B.1

.0

.α

.xL
B .xR

B.xL
A .xR

A

.xL
A .xR

A .xL
B .xR

B

.mA .mB



.• .•

.dBA(α).lA(x)
.rA(x)

.rB(x)

.lB(x)

.mB(α)

.mA(α)

Figure 3: Two fuzzy numbers with their middle curves.

Suppose that A and B are two fuzzy numbers given by Definition 3.1 (see Figure 3). Then, the α-cut intervals
IA(α) and IB(α) of the membership functions of A and B, respectively, are

IA(α) = [aA(α), bA(α)], IB(α) = [aB(α), bB(α)], (20)

where
aA(α) = l−1

A (α), bA(α) = r−1
A (α), aB(α) = l−1

B (α), bB(α) = r−1
B (α), (21)
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and α ∈ [0, 1]. Let mA(α) and mB(α) be the midpoints of the α-cut intervals IA(α) and IB(α), respectively. That is,

mA(α) =
l−1
A (α) + r−1

A (α)

2
, mB(α) =

l−1
B (α) + r−1

B (α)

2
,

where α ∈ [0, 1]. By having mA(α) and mB(α) for all α ∈ [0, 1], we get the middle curves mA and mB of the fuzzy
numbers A and B, respectively (see Figure 3). Here, we will characterize the relative position of the fuzzy numbers A
and B by the relative position of their middle curves mA and mB .

Now, let dBA(α) denote the signed horizontal distance between the middle lines mB and mA at level α. That is,

dBA(α) = mB(α)−mA(α) =
aB(α) + bB(α)

2
− aA(α) + bA(α)

2
. (22)

Then, by utilizing the preference measure µ(λ), µ(λ)(0, dBA(α)) may be viewed as a quantity that characterizes the
preference between A and B at α. That is, if µ(λ)(0, dBA(α)) > 1

2 , then A precedes B at α; otherwise A does not

precede B at α. With this line of thinking, the mean of the µ(λ)(0, dBA(α)) preference measure values may be interpreted
as a measure of the preference A ≺ B between the fuzzy numbers A and B. Based on the above considerations, we will
define the preference implication-based preference measure for two fuzzy numbers as follows.

Definition 3.2. Let F be a collection of fuzzy numbers. Let A,B ∈ F, and let λ > 0. The preference implication-based
measure M (λ) : F2 → (0, 1) of the preference A ≺ B (i.e. M (λ)(A,B)) is given by

M (λ)(A,B) =

1∫
0

µ(λ) (0, dBA(α)) dα, (23)

where

dBA(α) =
l−1
B (α) + r−1

B (α)

2
−

l−1
A (α) + r−1

A (α)

2
, (24)

α ∈ [0, 1].

It should be added that M (λ)(A,B) may be viewed as a quantity which measures how much the fuzzy number A
precedes the fuzzy number B. Next, by utilizing Eq. (16), from Eq. (23) we have

M (λ)(A,B) =

1∫
0

1

1 + e−λdBA(α)
dα. (25)

Note that, depending on the functions lA, rA, lB and rB , the computation of the integral in Eq. (25) may be cumbersome.

Alternatively, we can use the average M (λ)(A,B) ≈ 1
n

n∑
i=1

1

1+e
−λdBA( i

n )
, which approximates the integral well, if n is

sufficiently large (e.g. n = 1000).

3.1 Properties of the preference implication-based preference measure for fuzzy num-
bers

Now, we will show the key properties of the preference implication-based preference measure for fuzzy numbers. The
following property is the reciprocity property of the preference measure M (λ).

Property 3.3. Let A and B be two fuzzy numbers. Then,

M (λ)(A,B) +M (λ)(B,A) = 1, (26)

where λ > 0.

Proof. By using the signed distances dBA(α) and dAB(α) given by Eq. (24), where α ∈ [0, 1], and noting Eq. (23), Eq.
(17) and Eq. (18), we have

M (λ)(A,B) +M (λ)(B,A) =

1∫
0

(
µ(λ) (0, dBA(α)) + µ(λ) (dBA(α), 0)

)
dα =

1∫
0

1dα = 1.
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Taking into account Property 3.3 with B = A, we immediately get Property 3.4.

Property 3.4. Let A be a fuzzy number. Then,

M (λ)(A,A) =
1

2
, (27)

where λ > 0.

3.2 The preference implication-based preference measure for trapezoidal fuzzy numbers

In this section, we will apply the preference implication-based measure M (λ) to fuzzy numbers that have trapezoidal
membership functions. Namely, we will show how the measure M (λ)(A,B) can be computed for the spacial case where
A and B are trapezoidal fuzzy numbers. Also, we will describe the key properties of M (λ)(A,B) for this special case.

Definition 3.5. The trapezoidal fuzzy membership function µA : R → [0, 1] with the parameters xL
A < xL

A ≤ xR
A < xR

A

is given by

µA

(
x;xL

A, x
L
A, x

R
A, x

R
A

)
=



0, if x < xL
A

x−xL
A

xL
A−xL

A

, if xL
A ≤ x < xL

A

1, if xL
A ≤ x < xR

A
x−xR

A

xR
A−xR

A

, if xR
A ≤ x < xR

A

0, if xR
A ≥ x.

(28)

Suppose that A and B are two fuzzy numbers that have the trapezoidal membership functions µA and µB with the
parameters xL

A < xL
A ≤ xR

A < xR
A and xL

B < xL
B ≤ xR

B < xR
B , respectively. By noting Definition 3.1, the trapezoidal fuzzy

numbers A and B are fuzzy numbers with the following left hand side and right hand side functions:

lA(x) =
x− xL

A

xL
A − xL

A

, xL
A ≤ x < xL

A, rA(x) =
x− xR

A

xR
A − xR

A

, xR
A ≤ x < xR

A,

lB(x) =
x− xL

B

xL
B − xL

B

, xL
B ≤ x < xL

B , rB(x) =
x− xR

B

xR
B − xR

B

, xR
B ≤ x < xR

B.

(29)

Therefore, in this case, the middle curves mA and mB are straight lines. That is, mA is the line that connects the
midpoints of parallel sides of trapezoid A, and similarly, mB is the line that connects the midpoints of parallel sides of
trapezoid B. Here, utilizing Eq. (21) and Eq. (29), after direct calculation, we find that the α-cut intervals IA(α) and
IB(α) in Eq. (20) are given by the points

aA(α) = αxL
A + (1− α)xL

A, bA(α) = αxR
A + (1− α)xR

A,

aB(α) = αxL
B + (1− α)xL

B , bB(α) = αxR
B + (1− α)xR

B ,
(30)

α ∈ [0, 1].

3.2.1 Computing the preference implication-based preference measure for trapezoidal fuzzy numbers

Now, we will show how the preference implication-based preference measure given in Eq. (25) can be computed for two
trapezoidal fuzzy numbers.

Proposition 3.6. Let A and B be two fuzzy numbers that have the trapezoidal membership functions µA and µB with
the parameters xL

A < xL
A ≤ xR

A < xR
A and xL

B < xL
B ≤ xR

B < xR
B, respectively. Then, the preference implication-based

preference measure M (λ)(A,B) for the fuzzy numbers A and B can be computed as

M (λ)(A,B) =


1

λp
ln

(
eλ(p+q) + 1

eλq + 1

)
, if p ̸= 0 (31)

1

1 + e−λq
, if p = 0, (32)

where

p =
1

2

( (
xR
B − xR

B

)
+
(
xL
B − xL

B

)
−
(
xL
A − xL

A

)
−
(
xR
A − xR

A

) )
, (33)
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q =
1

2

(
xL
B + xR

B − xL
A − xR

A

)
, (34)

and λ > 0.

Proof. Since A and B are trapezoidal fuzzy numbers, by noting Eq. (30), the signed distance dBA(α) in Eq. (22) can
be written as

dBA(α) =
1

2

( (
xR
B − xR

B

)
+
(
xL
B − xL

B

)
−
(
xL
A − xL

A

)
−
(
xR
A − xR

A

) )
α+

1

2

(
xL
B + xR

B − xL
A − xR

A

)
,

where α ∈ [0, 1]. That is,
dBA(α) = pα+ q, (35)

where the constants p and q are given by Eq. (33) and Eq. (34), respectively. Therefore, M (λ)(A,B) in Eq. (25) can
be written as

M (λ)(A,B) =

1∫
0

1

1 + e−λ(pα+q)
dα. (36)

Let p ̸= 0. Then, by using the substitution u = eλpα+λq + 1, we can write∫
1

1 + e−λ(pα+q)
dα =

1

λp

∫
1

u
du =

1

λp
ln(u); and so

∫
1

1 + e−λ(pα+q)
dα =

ln
(
eλpα+λq + 1

)
λp

+ C,

where C is an arbitrary constant. Using this result and Eq. (36), we readily get Eq. (31).
Now, let p = 0. Then, Eq. (32) immediately follows from (36).

3.2.2 Properties of the preference implication-based preference measure for trapezoidal fuzzy numbers

Now, we will show the key properties of the preference implication-based preference measure for fuzzy numbers that
have trapezoidal membership functions.

Property 3.7. By making use of L’Hospital’s rule, we get

lim
p→0

(
1

λp
ln

(
eλ(p+q) + 1

eλq + 1

))
=

1

1 + e−λq
.

This means that Eq. (32) is the limit case of Eq. (31) when p → 0.

Later, we will make use of the following property of function M .

Property 3.8. Let A and B be two fuzzy numbers that have the trapezoidal membership functions µA and µB with the
parameters xL

A < xL
A ≤ xR

A < xR
A and xL

B < xL
B ≤ xR

B < xR
B, respectively. Then

1) M (λ)(A,B) > 1
2 holds if and only if

1∫
0

dBA(α)dα > 0

2) M (λ)(A,B) = 1
2 holds if and only if

1∫
0

dBA(α)dα = 0,

where the signed distance dBA(α) is given by Eq. (22), α ∈ [0, 1] and λ > 0.

Proof. In the proof of Proposition 3.6, we showed that the signed distance dBA(α) can be written as dBA(α) = pα+ q,
where the constants p and q are given by Eq. (33) and Eq. (34), respectively and α ∈ [0, 1]. Hence, we have

M (λ)(A,B) =

1∫
0

σ(λ)
p,q (α)dα, (37)

where the sigmoid function σ
(λ)
p,q : R → (0, 1) is given by

σ(λ)
p,q (α) =


1

1 + e−λp(α+ q
p )

, if p ̸= 0 (38)

1

1 + e−λq
, if p = 0 . (39)
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Let Il denote the integral of the linear function pα+ q from 0 to 1; that is, Il =
1∫
0

dBA(α)dα =
1∫
0

(pα+ q) dα. Here, let

α ∈ R. First, we will prove 1). Now, let p ̸= 0. Then, the line pα+ q intersects the horizontal axis α at α = − q
p ; that

is, pα + q = 0 holds if and only if α = − q
p . Next, based on Eq. (38), σ

(λ)
p,q (α) =

1
2 holds if and only if α = − q

p . Here,

we will distinguish two cases: (1a) p > 0 and (1b) p < 0.
(1a) If p > 0 then pα+ q is an increasing function; and so, Il > 0 holds if and only if − q

p < 1
2 . Also, due to the fact

that λ > 0 and p > 0, the sigmoid function σ
(λ)
p,q is increasing. Next, taking into account its symmetry, we get that the

inequality M (λ)(A,B) > 1
2 holds if and only if − q

p < 1
2 . That is, M

(λ)(A,B) > 1
2 is equivalent to Il > 0.

(1b) If p < 0 then pα + q is a decreasing function; and so, Il > 0 holds if and only if − q
p > 1

2 . Taking into

consideration the fact that λ > 0 and p < 0, we get that the sigmoid function σ
(λ)
p,q is decreasing. Also, noting its

symmetry, we get that the inequality M (λ)(A,B) > 1
2 holds if and only if − q

p > 1
2 . Therefore, M (λ)(A,B) > 1

2 is
equivalent to Il > 0.

Now, let p = 0. Then, dBA(α) has a constant value of q; and so, Il > 0 holds if and only if q > 0. Also, based on

Eq. (39), σ
(λ)
p,q has a constant value of

σ(λ)
p,q (α)

∣∣
p=0

=
1

1 + e−λq
,

and so Eq. (37) gives us

M (λ)(A,B) =
1

1 + e−λq
. (40)

Since λ > 0, from the last equation we get that the inequality M (λ)(A,B) > 1
2 holds if and only if q > 0. That is,

M (λ)(A,B) > 1
2 is equivalent to Il > 0.

Now, we will prove 2). Here, we will distinguish two cases: (2a) p ̸= 0 and (2b) p = 0.
(2a) If p ̸= 0, then pα + q is either an increasing or a decreasing function; and so, Il = 0 holds if and only if

− q
p = 1

2 . Also, the sigmoid function σ
(λ)
p,q is either increasing or decreasing, and by noting its symmetry, we get that

M (λ)(A,B) = 1
2 holds if and only if − q

p = 1
2 . That is, M

(λ)(A,B) = 1
2 is equivalent to Il = 0.

(2b) If p = 0, then, pα+ q has a constant value of q, which means that Il = 0 holds if and only if q = 0. Here again,
based on Eq. (37) and Eq. (39), we have Eq. (40). Therefore, M (λ)(A,B) = 1

2 holds if and only if q = 0. That is,

M (λ)(A,B) = 1
2 is equivalent to Il = 0.

4 Ranking trapezoidal fuzzy numbers

Here, using the preference implication-based preference measure for trapezoidal fuzzy numbers, we will introduce crisp
relations over a collection of trapezoidal fuzzy numbers, discuss their main algebraic properties and show how they can
be utilized to rank such fuzzy numbers.

Definition 4.1. Let F be a collection of fuzzy numbers with trapezoidal membership functions. The binary relation ≺F

over the collection F is given by

≺F :=

{
(A,B) ∈ F× F : M (λ) (A,B) >

1

2

}
,

where λ > 0.

In other words, based on Definition 4.1, the relation A ≺F B holds if and only if M (λ)(A,B) > 1
2 , where A and B

are two fuzzy numbers with trapezoidal membership functions. The following theorem states that the relation ≺F over
a collection of trapezoidal fuzzy numbers is a strict order relation.

Theorem 4.2. The relation ≺F given in Definition 4.1 is a strict order relation over a collection F of trapezoidal fuzzy
numbers.

Proof. Let F be a collection of fuzzy numbers with trapezoidal membership functions. In order to demonstrate that
the relation ≺F is a strict order relation over the set F, we need to show that ≺F is

1) irreflexive, i.e., for any A ∈ F, A ̸≺F A holds.

2) antisymmetric, i.e., for any A,B ∈ F, if A ≺F B, then B ̸≺F A.
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3) transitive, i.e., for any A,B,C ∈ F, if A ≺F B and B ≺F C, then A ≺F C.

1) (Irreflexivity.) Based on Property 3.4, M (λ)(A ≺ A) = 1
2 holds for any A ∈ F. Therefore, by noting Definition 4.1,

we see that A ≺F A does not hold.
2) (Antisymmetry.) Let A,B ∈ F such that A ≺F B. Then, based on Definition 4.1, M (λ)(A,B) > 1

2 . Now, by noting

the reciprocity property of function M (λ) (see Property 3.3), we have M (λ)(A,B)+M (λ)(B,A) = 1, from which we get
that M (λ)(B,A) < 1

2 . This means that B ̸≺F A.
3) (Transitivity.) Let A,B,C ∈ F such that A ≺F B and B ≺F C. Then, based on Definition 4.1, A ≺F B and B ≺F C
means that M (λ)(A,B) > 1

2 and M (λ)(B,C) > 1
2 . Now, by noting Property 3.8, M (λ)(A,B) > 1

2 is equivalent to

1∫
0

dBA(α)dα > 0, (41)

and M (λ)(B,C) > 1
2 is equivalent to

1∫
0

dCB(α)dα > 0, (42)

where the signed distances dBA(α) and dCB(α) are given by Eq. (24), and α ∈ [0, 1]. Next, by utilizing Eq. (24), the
signed distance dCA(α) can be written as

dCA(α) =
aC(α) + bC(α)

2
− aA(α) + bA(α)

2
= dCB(α) + dBA(α). (43)

Now, by noting Eq. (41) and Eq. (42) and Eq. (43), we can write

1∫
0

dCA(α)dα =

1∫
0

(dCB(α) + dBA(α)) dα =

1∫
0

dCB(α)dα+

1∫
0

dBA(α)dα > 0, (44)

which, based on Property 3.8, is equivalent to the inequality M (λ)(A,C) > 1
2 . This means that A ≺F C holds.

Example 4.3. Let the trapezoidal fuzzy numbers A and B be given by the following parameters:

xL
A = 14; xL

A = 17; xR
A = 22 xR

A = 29

xL
B = 0; xL

B = 24; xR
B = 27 xR

B = 31.

Figure 4 shows the plots of the membership functions of A and B. From the parameters of A and B, by using Eq. (33)

.
.x

.µ(x)

.A .B.1

.0
.xL
B .xR

B.xL
A .xR

A

.xL
A .xR

A .x
L
B .xR

B

.mA .mB

.− q
p = 1

2 .•

Figure 4: Two trapezoidal fuzzy numbers that are incomparable using the relation ≺F .

and Eq. (34), we get p = 12 and q = −6. Next, by applying the formula for M (λ)(A,B) given in Eq. (31), we get

M (λ)(A,B) =
1

λp
ln

eλ(p+q) + 1

eλq + 1
=

1

12λ
ln

e6λ + 1

e−6λ + 1
=

1

2
.

Now, by noting the reciprocity property of M (λ), we have M (λ)(B,A) = 1
2 .
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Example 4.3 demonstrates a case where neither A ≺F B, nor B ≺F A holds; that is, A and B are incomparable
using the relation ≺F . This also means that the relation ≺F is not total. That is, A and B are two trapezoidal fuzzy
numbers for which neither of the following relations holds: A ≺F B, B ≺F A, A = B.

If the lines mA and mB are nonparallel, then the vertical coordinate of their intersection point is that α for which
dBA(α) = 0. In the proof of Property 3.8, we showed that dBA(α) = 0 is equivalent to α = − q

p . In the same proof,

we also showed that M (λ)(A,B) = 1
2 holds if and only if − q

p = 1
2 . This means that if the trapezoidal fuzzy numbers

A and B have such positions that the vertical coordinate of the intersection of the lines mA and mB is α = 1
2 , then

M (λ)(A,B) = 1
2 .

It should be mentioned that the incomparability of the trapezoidal fuzzy numbers A and B using the relation ≺F

in Example 4.3 is in line with the human perception that judging the order of these fuzzy numbers is difficult; and so,
we tend to consider their order as being indifferent.

Now, we will introduce a crisp relation that may be interpreted as a relation that expresses the order indifference
of trapezoidal fuzzy numbers. We will call this relation the order indifference relation.

Definition 4.4. Let F be a collection of trapezoidal fuzzy numbers. The binary relation ≡F (indifference relation) over
the collection F is given by

≡F :=

{
(A,B) ∈ F× F : M (λ) (A,B) =

1

2

}
,

where λ > 0.

The following theorem states that the relation ≡F over a collection of trapezoidal fuzzy numbers is an equivalence
relation.

Theorem 4.5. The relation ≡F given in Definition 4.4 is an equivalence relation over a collection F of trapezoidal
fuzzy numbers.

Proof. Let F be a collection of fuzzy numbers with trapezoidal membership functions. In order to demonstrate that
≡F is an equivalence relation, we need to show that ≡F is

1) reflexive, i.e., for any A ∈ F, A ≡F A holds

2) symmetric, i.e., for any A,B ∈ F, if A ≡F B, then B ≡F A

3) transitive, i.e., for any A,B,C ∈ F, if A ≡F B and B ≡F C, then A ≡F C.

1) (Irreflexivity.) Based on Property 3.4, M (λ)(A,A) = 1
2 holds for any A ∈ F. Therefore, by noting Definition 4.4, we

get that A ≡F A.
2) (Symmetry.) Let A,B ∈ F such that A ≡F B. Then, based on Definition 4.4, M (λ)(A,B) = 1

2 . Now, by noting the

reciprocity property of function M (λ) (see Property 3.3), we have M (λ)(A,B) + M (λ)(B,A) = 1, from which we get
that M (λ)(B,A) = 1

2 . This means that B ≡F A.
3) (Transitivity.) Let A,B,C ∈ F such that A ≡F B and B ≡F C. Then, based on Definition 4.4, A ≡F B and B ≡F C
means that M (λ)(A,B) = 1

2 and M (λ)(B,C) = 1
2 . Now, by noting Property 3.8, M (λ)(A,B) = 1

2 is equivalent to

1∫
0

dBA(α)dα = 0, (45)

and M (λ)(B,C) = 1
2 is equivalent to

1∫
0

dCB(α)dα = 0, (46)

where the signed distances dBA(α) and dCB(α) are given by Eq. (24), and α ∈ [0, 1]. Now, by taking into account Eq.
(43), Eq. (45) and Eq. (46), we have

1∫
0

dCA(α)dα =

1∫
0

dBA(α)dα+

1∫
0

dCB(α)dα = 0,

which, based on Property 3.8, is equivalent to M (λ)(A,C) = 1
2 . That is, A ≡F C holds.



64 J. Dombi, T.Jónás

4.1 The preference implication-based ranking method

Here, by the means of an example, we will present a method for ranking trapezoidal fuzzy numbers by using the
preference implication-based preference measure and the crisp relations ≺F and ≡F . This method has been implemented
in MATLAB 2019a computing environment (see https://github.com/dombijozsef).

Suppose that we wish to rank the elements of the collection F = {A1, A2, . . . , An} of fuzzy numbers that have
trapezoidal membership functions. The parameter values of A1, A2, . . . , An are shown in Table 1.

Table 1: Parameters of fuzzy numbers.

xL
A xL

A xR
A xR

A
A1 43 65 68 74

A2 33 65 68 74

A3 55 58 62 73

A4 0 24 27 31

A5 42 71 87 111

A6 57 72 77 85

A7 55 60 65 70

A8 14 17 22 29

Table 2: Matrix of the preference measure values.

A1 A2 A3 A4 A5 A6 A7 A8
A1 0.5000 0.2457 0.4623 0.0000 0.9993 0.9928 0.5000 0.0000

A2 0.7543 0.5000 0.6138 0.0000 0.9996 0.9962 0.6745 0.0000

A3 0.5377 0.3862 0.5000 0.0000 0.9994 0.9923 0.5575 0.0000

A4 1.0000 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 0.5000

A5 0.0007 0.0004 0.0006 0.0000 0.5000 0.0765 0.0005 0.0000

A6 0.0072 0.0038 0.0077 0.0000 0.9235 0.5000 0.0067 0.0000

A7 0.5000 0.3255 0.4425 0.0000 0.9995 0.9933 0.5000 0.0000

A8 1.0000 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 0.5000

Table 3: The ni, pi, uk and oi values.

i 1 2 3 4 5 6 7 8
ni 2 5 4 6 0 1 2 6
pi 6 3 4 2 8 7 6 2
k 1 2 3 4 5 6
uk 2 3 4 6 7 8
oi 4 2 3 1 6 5 4 1

In this example n = 8. Here, using the formulas in Eq. (31) and Eq. (32) with a λ = 0.5 parameter value,
the preference implication-based preference measure M (λ)(Ai, Aj) was computed for each (Ai, Aj) pair and stored
in the preference measure matrix in Table 2, where Ai, Aj ∈ F, i, j = 1, 2, . . . , n. In this matrix, we can see the
reciprocity property of the index M (λ); that is, M (λ)(Ai, Aj) = 1 − M (λ)(Aj , Ai) holds for any i, j = 1, 2, . . . , n.
Note that the computed values in Table 2 have been rounded to four digits. Let ni denote the cardinality of the set
{j ∈ {1, 2, . . . , n} : Ai ≺F Aj}; that is, ni is the number of those Aj fuzzy sets for which M (λ)(Ai, Aj) > 1

2 holds,
i ∈ {1, 2, . . . , n}, (see Table 3). Let pi be given by pi = n−ni for i = 1, 2, . . . n, and let the sequence u1 < u2 < · · · < um

contain the unique values of p1, p2, . . . , pn in increasing order, (m ≤ n). Now, for every i ∈ {1, 2, . . . , n} let oi be given
by oi = k such that uk = pi, where k ∈ {1, 2, . . . ,m}. Then, oi may be interpreted as the order index of the fuzzy set
Ai, where i = 1, 2, . . . , n. Table 3 summarizes the ni, pi, uk and oi values for our case.

Notice that the fuzzy numbers A4 and A8 have the same order index (1); that is, we consider the order of these two
fuzzy numbers as being indifferent. From Table 2, we can see that M (λ)(A4, A8) = 0.5000, which, after considering the
definition for the relation ≡F over the set F, means that the relation A4 ≡F A8 holds. Also, the fuzzy numbers A1 and
A7 have the same order index (4), which means that the relation A1 ≡F A7 holds as well. Hence, the fuzzy numbers
with the same order index oi form groups such that in each of these groups, we view the order of the fuzzy numbers
as being indifferent. Using the relations ≺F and ≡F , the order of the fuzzy numbers in F can be represented by the
following relation chain: A4 ≡F A8 ≺F A2 ≺F A3 ≺F A1 ≡F A7 ≺F A6 ≺F A5.

Figure 5 shows a graph representation of this relation chain. In this figure, the black and gray-colored arrows
represent the relations ≺F and ≡F , respectively. Figure 6 shows the fuzzy sets when they are ranked using the relations
≺F and ≡F . In this figure, each of the gray-colored areas contain a group of fuzzy numbers whose order is viewed as
being indifferent: group {A4, A8} and group {A1, A7}.

.

.A4

.A8

.A2 .A3

.A1

.A7

.A6 .A5

Figure 5: Graph representation of ≺F and ≡F .
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Figure 6: Ranked fuzzy numbers.



Preference implication-based approach to ranking fuzzy numbers 65

4.2 Comparisons with other ranking methods

We compared our fuzzy number ranking method with some well-known ones. The methods taken into account were the
maximizing set and minimizing set method by Chen (1985) [10], the L-R spreads method by Abbasbandy and Hajjari
(2009) [2], the sign distance method by Abbasbandy and Asady (2006) [1], the revised maximizing set and minimizing
set method by Chou et al. (2011) [13], the distance method by Cheng (1998) [11], the inclusion index and bitset encoding
method by Boulmakoul et al. (2017) [8], the maximizing barrier and minimizing barrier method by Choobineh and
Li (1993) [12], the sign distance method by Abbasbandy and Asady (2006) [1], the distance minimization method by
Asady and Zendehnam (2007) [6], the revised distance minimization method by Ezzati et al. (2012) [20], the centroid
point and original point area by Chu and Tsao (2002) [14] and the decomposition and signed distance method by Yao
and Wu (2000) [39].

Our comparison is based on eight samples of trapezoidal and triangular fuzzy numbers that were used as examples
in the above-mentioned publications. Each fuzzy number is given by a quadruple according to the definition of the
trapezoidal fuzzy number in Definition 3.5. Here, the triangular fuzzy numbers are also given by quadruples in which
the two middle parameters are identical. The eight samples and results of the ranking methods are summarized in
Table 4. The plots of the membership functions of the fuzzy numbers in the examined samples are shown in Figure
7. In Table 4, ≃ stands for the indifference (equality) relation, while ≺ and ≻ denote preference relations. Note that
the comparisons in Table 4 are based on the results available in the above-mentioned publications, and so not all the
methods are compared for each sample (e.g., there are 3 methods for Sample 1, and there are 12 methods for Sample
7 in Table 4).
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Figure 7: Samples of trapezoidal and triangular fuzzy numbers.

It should be noted that in line with the human intuition, if two fuzzy numbers have a common symmetry axis,
then the outcome of our method is that the order of these two fuzzy numbers may be considered as being indifferent,
see, e.g. Sample 3 and 4, or the fuzzy numbers B and C in Sample 5 and 6. We should also add that not all the
examined methods own this property. In Sample 5 and 6, the fuzzy numbers denoted by the same letters are mirrored
pairs. Therefore, we may expect that the order of −A, −B and −C is the reverse of the order of A, B and C. Our
method and the methods of Abbasbandy and Hajjari (2009) and Boulmakoul et al. (2017) meet this expectation, but
the method of Ezzati et al. (2012) does not. In sample 8, due to the overlapping of fuzzy numbers B and C, it is
difficult to judge their order. The outcome of our method, and of some other methods as well, is that the order of B
and C may be viewed as being indifferent. This outcome is in accordance with human intuition. These properties of
our method suggest that it may be treated as a new alternative fuzzy number ranking method.

5 Conclusions

The main findings of this study can be summarized as follows. Dombi and Baczyński first introduced the preference
implication [18]. Now, in this study, we showed how the preference implication is connected with soft inequalities and
explained why we modeled the latter ones by sigmoid functions. Utilizing this connection, we introduced the preference
implication-based measure of preference for two real numbers and discussed its key properties. Next, we proposed the
preference implication-based preference measure for two fuzzy numbers and highlighted some important properties of
this new preference measure including its reciprocity. Furthermore, we derived the formulas using which the preference
implication-based preference measure for two trapezoidal fuzzy numbers can be readily computed. The comparison of
two fuzzy numbers should also be able to capture the situation where the order of the fuzzy numbers cannot be judged;
and so, their order may be considered as being indifferent. Here, using the preference implication-based preference
measure for two trapezoidal fuzzy numbers, we introduced two crisp relations over a collection of trapezoidal fuzzy
numbers and discussed their main algebraic properties. We demonstrated that one of these two crisp relations is a
strict, but not a total, order relation, and the other one is an equivalence relation. Here, we considered two fuzzy
numbers as being comparable, when their order can be unambiguously determined. Next, we showed that our strict
order relation can be used to rank comparable fuzzy numbers, while our equivalence relation, which we called the
indifference relation, can be utilized to express the view that the order of some fuzzy numbers is indifferent. In an
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Table 4: Ranking results.

Sample ID Sample Method Ranking

1
A = (5, 6, 6, 7)
B = (5.9, 6, 6, 7)
C = (6, 6, 6, 7)

Chen (1985)
Abbasbandy and Hajjari (2009)
Chou et al. (2011)
Boulmakoul et al. (2017)
The proposed method

A ≺ B ≺ C
A ≺ B ≺ C
C ≺ B ≺ A
A ≺ B ≺ C
A ≺ B ≺ C

2
A = (0.5, 0.3, 0.2)
B = (−0.58,−0.32,−0.32,−0.17)
C = (−0.7,−0.4,−0.4,−0.25)

Chen (1985)
Cheng (1998)
Choobineh and Li (1993)
Boulmakoul et al. (2017)
The proposed method

A ≺ B ≺ C
A ≺ B ≺ C
C ≺ B ≺ A
C ≺ B ≺ A
C ≺ B ≺ A

3
A = (1, 3, 3, 5)
B = (2, 3, 3, 4)

Yao and Wu (2000)
Abbasbandy and Hajjari (2009)
Ezzati et al. (2012)
Boulmakoul et al. (2017)
The proposed method

A ≃ B
A ≃ B
A ≻ B
A ≺ B
A ≃ B

4
A = (−6,−2, 2, 6)
B = (−2, 0, 0, 2)

Abbasbandy and Hajjari (2009)
Ezzati et al. (2012)
Boulmakoul et al. (2017)
The proposed method

A ≃ B
A ≻ B
A ≺ B
A ≃ B

5
A = (1, 1, 1, 15)
B = (−2, 4, 4, 10)
C = (0, 2, 6, 8)

Abbasbandy and Hajjari (2009)
Ezzati et al. (2012)
Boulmakoul et al. (2017)
The proposed method

A ≺ B ≃ C
A ≺ C ≺ B
C ≃ B ≺ A
C ≃ B ≺ A

6
−A = (−15,−1,−1,−1)
−B = (−10,−4,−4, 2)
−C = (−8,−6,−2, 0)

Abbasbandy and Hajjari (2009)
Ezzati et al. (2012)
Boulmakoul et al. (2017)
The proposed method

−C ≃ −B ≺ −A
−C ≺ −B ≺ −A
−A ≺ −B ≃ −C
−A ≺ −B ≃ −C

7
A = (0.3, 0.5, 0.5, 0.7)
B = (0.3, 0.5, 0.8, 0.9)
C = (0.3, 0.5, 0.5, 0.9)

Boulmakoul et al. (2017)
Ezzati et al. (2012)
Abbasbandy and Hajjari (2009)
Abbasbandy and Asady (2006) (p=1)
Abbasbandy and Asady (2006) (p=2)
Asady and Zendehnam (2007)
Choobineh and Li (1993)
Chen (1985)
Chu and Tsao (2002)
Yao and Wu (2000)
Cheng (1998)
The proposed method

A ≺ C ≺ B
A ≺ C ≺ B
A ≺ C ≺ B
A ≺ C ≺ B
A ≺ C ≺ B
A ≺ C ≺ B
A ≺ B ≺ C
A ≺ B ≺ C
A ≺ C ≺ B
A ≺ C ≺ B
A ≺ C ≺ B
A ≺ C ≺ B

8
A = (0, 0.3, 0.7, 0.8)
B = (0.2, 0.5, 0.5, 0.9)
C = (0.1, 0.6, 0.6, 0.8)

Boulmakoul et al. (2017)
Ezzati et al. (2012)
Abbasbandy and Hajjari (2009)
Abbasbandy and Asady (2006) (p=1)
Abbasbandy and Asady (2006) (p=2)
Asady and Zendehnam (2007)
Choobineh and Li (1993)
Chen (1985)
Chu and Tsao (2002)
Yao and Wu (2000)
Cheng (1998)
The proposed method

A ≺ C ≺ B
B ≺ A ≺ C
B ≺ A ≺ C
A ≺ B ≃ C
A ≺ B ≺ C
A ≺ B ≃ C
A ≺ B ≺ C
A ≺ B ≺ C
A ≺ C ≺ B
A ≺ B ≃ C
A ≺ C ≺ B
A ≺ B ≃ C

illustrative example, we showed how these two crisp relations can be used to rank a collection of trapezoidal fuzzy
numbers. Based on the results of comparisons with other well-known fuzzy number ranking methods, our method may
be viewed as a new alternative fuzzy number ranking method.
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