تعداد نشریات | 32 |
تعداد شمارهها | 719 |
تعداد مقالات | 7,024 |
تعداد مشاهده مقاله | 11,552,812 |
تعداد دریافت فایل اصل مقاله | 7,910,498 |
تحلیل امنیت اکولوژیکی تغییرات کاربری اراضی حوزۀ لواسانات با استفاده از سنجههای سیمای سرزمین | ||
نشریه جغرافیا و توسعه | ||
مقاله 4، دوره 19، شماره 64، مهر 1400، صفحه 77-114 اصل مقاله (1.24 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/j10.22111.2021.6320 | ||
نویسندگان | ||
یاسر معرب1؛ اسماعیل صالحی* 2؛ محمد جواد امیری3؛ حسن هویدی4 | ||
1دانشجوی دکتری برنامهریزی محیطزیست، پژوهشگر دانشگاه جامع امام حسین(ع)، دانشکدۀ محیطزیست، دانشگاه تهران، ایران | ||
2دانشیار دانشکده محیط زیست دانشگاه تهران، ایران | ||
3استادیار برنامهریزی محیطزیست، دانشکدۀ محیطزیست، دانشگاه تهران،ایران | ||
4استادیار برنامهریزی محیطزیست، دانشکدۀ محیطزیست، دانشگاه تهران، ایران | ||
چکیده | ||
شهرنشینی مداوم در دهههای گذشته، باعث تمرکز بسیار زیاد جمعیت انسانی در این مناطق شده است. در ایران به علت افزایش جمعیت و توسعه سریع و بی نظم شهری، تغییر در کاربری و پوشش اراضی با سرعت در حال وقوع است و پایداری شهرها روز به روز در حال کاهش میباشد. بنابراین درک اثرات رشد شهری بر اکوسیستم و تعیین رابطه پویایی شهری و امنیت اکولوژیکی برای برنامهریزی موثر شهری و حفاظت از محیطزیست حیاتی است، تا از توسعه پایدار حمایت و پشتیبانی کند. هدف از این تحقیق، پایش و پیشبینی تغییرات کاربری اراضی در دوره 4 ساله(2000-2040) با مدل زنجیرهای مارکوف(CA-Markov) در حوزه لواسانات استان تهران و ارزیابی امنیت اکولوژیک این حوزه در دورههای زمانی مطرح شده است. به منظور بررسی تغییرات کاربری اراضی، از تصاویر ماهوارهای لندست استفاده شد. با توجه به کاربریهای موجود در منطقه، پنج کاربری سطوح ساخته شده، اراضی بایر، اراضی مرتع، سطوح آبی و اراضی باغی و کشاورزی مد نظر قرار گرفت. جهت کمی کردن الگوهای سیمای سرزمین در سطح کلاس متریکهایNP، LSI، IJI، CA، PLAND و LPI. و متریکهایNP، LSI، IJI، ED، PD وSPILT در سطح سیمای سرزمین محاسبه شد. نتایج پیشبینی پوشش زمین در سال 2040 نشان میدهددر سطح هر طبقه با ادامه روند کنونی تعداد لکهها به جز طبقه بایر در سایر طبقات کاهش پیدا خواهد کرد. این پدیده در اراضی ساخته شده به دلیل به هم پیوستن لکههای خرد در سالهای قبلی و در سایر طبقات به دلیل از بینرفتن لکههای کوچک خواهد بود که در بیشتر موارد به اراضی ساخته شده تبدیل خواهند گشت و در سطح سیمای سرزمین این تغییرات باعث کاهش تعداد لکهها، سادهتر و منظمتر شدن شکل و افزایش پیوستگی در سطح سیمای سرزمین خواهد گردید. | ||
کلیدواژهها | ||
"امنیت اکولوژیکی"؛ "کاربری اراضی"؛ "لواسانات" | ||
مراجع | ||
طالاری، آرش (1395). تحلیل مورفومتری حوضۀ لواسانات و تأثیر آن بر تغییرات شبکۀ زهکشی، استاد راهنما: دکتر ابراهیم مقیمی، استاد مشاور: دکتر مجتبی یمانی، دانشگاه تهران. دانشکدۀ جغرافیا. گروه جغرافیای طبیعی. https://thesis2.ut.ac.ir/newthesis/UTCatalog/UTThesis/Forms/ThesisBrief.aspx?thesisID=17645dfd-9372-4e77-a786-d37d3eb0381d شفیعیثابت، ناصر؛ علیرضا شکیبا؛ اشکان محمدی (1398). آشکارسازی و پیشبینی تغییرات کاربری اراضی با استفاده از مدل CA-Markov مطالعۀ موردی: محور کلانشهر تهران دماوند، فصلنامۀ علمی- پژوهشی اطلاعات جغرافیایی (سپهر). دورۀ 28. شمارۀ 111. صفحات 190- 175. http://www.sepehr.org/article_37517.html ممبنی، مریم؛ حمیدرضا عسگری (1397). پایش، بررسی و پیشبینی روند تغییرات مکانی کاربری اراضی/ پوشش زمین با استفاده از مدل زنجیرهای مارکوف، مطالعۀ موردی: شوشتر- خوزستان، فصلنامۀ علمی- پژوهشی اطلاعات جغرافیایی (سپهر)، دورۀ 27. شمارۀ 105. صفحات 47-35. http://www.sepehr.org/article_31471.html Adhikari, S., & Southworth, J. (2012). Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model: a remote sensing approach. Remote Sensing, 4(10), 3215-3243. https://doi.org/10.3390/rs4103215 Ajayi, Adedeji, H., Adeofun, C & Awokola, S. (2016). Land Use Change Assessment, Prediction Using Remote Sensing, and GIS Aided Markov Chain Modelling at Eleyele Wetland Area, Nigeria. Journal of Settlements and Spatial Planning, 7(1), 51. https://doi.org/10.19188/06JSSP012016 Alberti, M. Marzluff , J. (2004). Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosystems 7(3): 241-265. https://doi.org/10.1023/B:UECO.0000044038.90173.c6 Amiraslani, F & Dragovich, D (2011). Combating desertification in Iran over the last 50 years: An overview of changing approaches, Journal of Environmental Management, 92 (1), 1-13. https://doi.org/10.1016/j.jenvman.2010.08.012 Arsanjani, J. J., Helbich, M., Kainz, W., Darvishi Boloorani, A (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion,International Journal of Applied Earth Observation and Geoinformation 21, 265-275. https://doi.org/10.1016/j.jag.2011.12.014. Asfaw, M. Worku, H. (2019). Quantification of the land use/land cover dynamics and the degree of urban growth goodness for sustainable urban land use planning in Addis Ababa and the surrounding Oromia special zone. Journal of Urban Management 8(1): 145-158. https://doi.org/10.1016/j.jum.2018.11.002 Basumatary, A., Middha, S.K., Usha, T., Brahma, B.K., Goyal, A.K., 2015. Bamboo, as potential sources of food security, economic prosperity and ecological security in North- East India: an overview. Res. Plant Biol. 5(2), 17-23. http://updatepublishing.com/journal/index.php/ripb/article/view/2637 Bell, M., Levy, J.Z., (2008). The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occup. Environ. Med. 65 (2), 104-111. https://doi.org/10.1136/oem.2006.031500 Bhatta, B., Saraswati, S., & Bandyopadhyay, D. (2010). Quantifying the degree-of freedom, degree-of-sprawl, and degree-of-goodness of urban growth from remote sensing data. Applied Geography, 30 (1), 96-111. https://doi.org/10.1016/j.apgeog.2009.08.001 Brunner, D., Lemoine, G., Bruzzone, L (2010). Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans. Geosci. Remote Sens. 48 (5), 2403-2420. https://doi.org/10.1109/TGRS.2009.2038274 Cabral, P., & Zamyatin, A (2009). Markov processes in modeling land use and land cover changes in Sintra-Cascais, Portugal. Dyna, 76(158), 191-198. https://www.researchgate.net/publication/43070232 Chang, Q., Liu, D (2015). Ecological security research progress in China, Acta Ecologica Sinica, 35(5), 111-121. https://doi.org/10.1016/j.chnaes.2015.07.001 Chen, A., Yao, L., Sun, R., Chen, L (2014). How many metrics are required to identify the effects of the landscape pattern on land surface temperature?, Ecological Indicators 45, 424-433. https://doi.org/10.1016/j.ecolind.2014.05.002 Chen, L., Sun, R. and Yang, L (2018). Regional Eco-security: Concept, Principles and Pattern Design, Challenges Towards Ecological Sustainability in China, 19-37. https://doi.org/10.1007/978-3-030-03484-92. Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/ Baltimore. International journal of geographical information science, 12(7), 699-714. https://doi.org/10.1080/136588198241617 Congalton, R.G (1991). A review of assessing the accuracy of classifcations of remotely sensed data, Remote Sensing of Environment, 37, 35-46. https://doi.org/10.1016/0034-4257(91)90048-B Čuček, L., Klemeš, J.J., Varbanov, P.S., Kravanja, Z (2015). Significance of environmental footprints for evaluating sustainability and security of development. Clean Techn. Environ. Policy 17 (8), 2125-2141.https://doi.org/10.1007/s10098-015-0972-3 Cumming, G.S., Allen, C.R (2017). Protected areas as social-ecological systems: perspectives from resilience and social-ecological systems theory. Ecol. Appl. 27, 1709-1717. https://doi.org/10.1002/eap.1584 Dawelbait, M, and Morai, F, (2012). Monitoring desertification in a savannah region in Sudan using Landsat images and spectral mixture analysis. Journal of Arid Environments. 8: 45-55. https://doi.org/10.1016/J.JARIDENV.2011.12.011 Du Y, Teillet PM, Cihlar J. (2002). Radiometric normalization of multitemporal high-resolutionsatellite images with quality control for land cover change detection. Remote sensing of Environment, 82(1): 123-134. https://doi.org/10.1016/S0034-4257(02)00029-9 Fan, Ch., Myint,S., (2014). A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation, Landscape and Urban Planning 121,117-128. https://doi.org/10.1016/j.landurbplan.2013.10.002 Fan, F., Weng, Q, Wang, Y. P (2007). Land Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on Landsat TM /ETM+ Imagery. Sensors 2007, 7(7), 1323-1342; https://doi.org/10.3390/s7071323 Feist, B. E., Buhle, E. R., Baldwin, D. H., Spromberg, J. A., Damm, S. E., Davis, J.W., Scholz, N.L (2017). Roads to ruin: conservation threats to a sentinel species across an urban gradient. Ecol. Appl. 27, 2382-2396. https://doi.org/10.1002/eap.1615 Feng, Y., Liu, Y., Liu, Y (2017). Spatially explicit assessment of land ecological security with spatial variables and logistic regression modeling in Shanghai, China. Stoch. Env. Res. Risk A. 31 (9), 2235-2249. https://doi.org/10.1007/s00477-016-1330-7 Feyisa, G.L; Meilby, H, Jenerette, G. D, and Pauliet, S (2016). Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa,Ethiopia.Remote Sensing of Environment, No. 1: 3-14. https://doi.org/10.1016/j.rse.2015.12.026 Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., Nayak, S.K, Ghosh, S., Mitra, D., Ghosh, T., Hazra, S., (2017). Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review.Remote Sensing Applications: Society and Environment No.5: 64-77. https://doi.org/10.1016/j.rsase.2017.01.005 Gong, W., Yuan, L., Fan, W., & Stott, P (2015). Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling. International Journal of Applied Earth Observation and Geoinformation, 34, 207-216. https://doi.org/10.1016/j.jag.2014.07.005 Habibi, S., & Asadi, N (2011). Causes, results and methods of controlling urban sprawl. Procedia Engineering, 21, 133-141. https://doi.org/10.1016/j.proeng.2011.11.1996 Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101-112. https://doi.org/10.1016/j.apgeog.2015.06.015 Han, B. Liu, H. Wang, R. (2015). Urban ecological security assessment for cities in the Beijing-Tianjin-Hebei metropolitan region based on fuzzy and entropy methods, Journal of Ecological Modelling, Volume 318, PP. 217-225. https://doi.org/10.1016/j.ecolmodel.2014.12.015 He, C., Liu, Z., Tian, J., Ma, Q., (2014). Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Glob. Chang. Biol. 20, 2886-2902. https://doi.org/10.1111/gcb.12553. Hu, Z., & Lo, C. P. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667-688. https://doi.org/10.1016/j.compenvurbsys.2006.11.001 Inkoom, J.N., Frank ,S., Greve, K., Walz, U., Fürst, Ch (2018). Suitability of different landscape metrics for the assessments of patchy landscapes in West Africa, Ecological Indicators 85, 117-127. https://doi.org/10.1016/j.ecolind.2017.10.031 Jinhua, M., Zhengdong, Z., Yuzhi, Y., & Caiwen, D. (2015). Landscape Pattern Analysis and Dynamic Prediction of Liuxi Basin in South China Based on CA-Markov Model. Journal of South China Normal University (Natural Science Edition), 47(4), 122-127.https://doi.org/10.6054/j.jscnun.2014.12.042 Kamusoko, C., Aniya, M., Adi, B., and Manjoro, M., (2009). Rural sustainability under threat in Zimbabwe - Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model, Applied Geography, 29, 3, 435-447. https://doi.org/10.1016/j.apgeog.2008.10.002 Kim, J., (2019). Subdivision design and landscape structure: Case study of The Woodlands, Texas, US, Urban Forestry & Urban Greening 38, 232-241.https://doi.org/10.1016/j.ufug.2019.01.006 Kityuttachai, K., Tripathi, N. K., Tipdecho, T., & Shrestha, R. (2013). CA-Markov analysis of constrained coastal urban growth modeling: Hua Hin seaside city, Thailand. Sustainability, 5(4), 1480-1500. https://doi.org/10.3390/su5041480 Kong, F., Ban, Y., Yin, H., James, P., Dronova, I., (2017). Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ. Model. Softw 95, 132-142. https://doi.org/10.1016/j.envsoft.2017.06.021. Kullenberg, G. (2002). Regional co-development and security: a comprehensiveapproach. Ocean Coastal Manag. 45 (11-12), 761-776. https://doi.org/10.1016/S0964-5691(02)00105-9 Li, J., Song, C., Cao, L., Zhu, F., Meng, X., Wu, J., (2011). Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens. Environ. 115, 3249-3263. https://doi.org/10.1016/j.rse.2011.07.008. Li, X., Tian, M., Wang, H., Wang, H., Yu, J., (2014). Development of an ecological security evaluation method based on the ecological footprint and application to a typical steppe region in China, Ecological Indicators39 (2014) 153-159. https://doi.org/10.1016/j.ecolind.2013.12.014 Li, Z.T., Yuan, M. J, Hu, M.M., Wang, Y.F., Xia, B.Ch., (2019). Evaluation of ecological security and influencing factors analysis based on robustness analysis and the BP-DEMALTE model: A case study of the Pearl River Delta urban agglomeration, Ecological Indicators 101,595-602. https://doi.org/10.1016/j.ecolind.2019.01.067 Li, Zh., XU, L (2010). Evaluation indicators for urban ecological security based on ecological network analysis, Procedia Environmental Sciences 2 (2010) 1393-1399. https://doi.org/10.1016/j.proenv.2010.10.151 Lillesand T, Kiefer RW, Chipman J. (2014). Remote sensing and image interpretation. John Wiley & Sons, 704. https://www.amazon.com/Remote-Sensing-Interpretation-Thomas-Lillesand/dp/0470052457 Liu, M., Hu, Y. M., Li, Ch.L., (2017) . Landscape metrics for three-dimensional urban building pattern Recognition,Applied Geography 87,66-72. https://doi.org/10.1016/j.apgeog.2017.07.011 Liu, P., Jia, S., Han, R., and Zhang, H., (2018). Landscape Pattern and Ecological Security Assessment and Prediction Using Remote Sensing Approach, Journal of Sensors Volume 2018, Article ID 1058513, 14. https://doi.org/10.1155/2018/1058513. Liu, Y., Peng, J., Wang, Y., (2018). Efficiency of landscape metrics characterizing urban land surface Temperature, Landscape and Urban Planning 180 (2018) 36-53. https://doi.org/10.1016/j.landurbplan.2018.08.006 Liu, Y., Wei, X., Li, P., Li, Q (2016). Sensitivity of correlation structure of class- and landscape-levelmetrics in three diverse regions, Ecological Indicators 64, 9-19. https://doi.org/10.1016/j.ecolind.2015.12.021 Louca, M., Vogiatzakis, I. N., & Moustakas, A. (2015). Modelling the combined effects of land use and climatic changes: Coupling bioclimatic modelling with Markov-chain Cellular Automata in a case study in Cyprus.Ecological Informatics, 30, 241-249.https://doi.org/10.1016/j.ecoinf.2015.05.008 Lu, J (2015). Landscape ecology, urban morphology, and CBDs: An analysis of the Columbus, Ohio Metropolitan Area, Applied Geography 60, 301-307. https://doi.org/10.1016/j.apgeog.2014.11.004 Ma, L., Bo, J., Li, X., Fang, F., Cheng, W (2019). Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example, Science of the Total Environment 674 (2019) 424-438. https://doi.org/10.1016/j.scitotenv.2019.04.107 Mas, J. F; Kolb, M; Paegelow, M. & Camacho Olmedo, M.T (2014). Inductive pattern- based land use/ cover change models: Acomparision of Four software packages. Environmental Modelling & software. 51: 94-111. https://doi.org/10.1016/j.envsoft.2013.09.010 Mas, J.F., H. Puig, H. J.L. Palacio, J.L. & A. Sosa- López. A (2004). Modelling deforestation using GIS and artificial neural networks, Environmental Modeling & Software,19:461-471. https://doi.org/10.1016/S1364-8152(03)00161-0 Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M (2007). Agent-based land-use models: a review of applications. Landscape Ecology, 22(10), 1447-1459. https://doi.org/10.1007/s10980-007-9135-1 Mayes, M. T, Mustard, J. F. and Melillo, J. M (2015). Forest cover change in Miombo Woodlands: Modeling land cover of Africa dry tropical forests with linear spectral mixture analysis.Remote Sensing of Environment. No.165: 203-215. https://doi.org/10.1016/j.rse.2015.05.006 Miller, J. D., Brewer, T (2018). Refining flood estimation in urbanized catchments using landscape metrics, Landscape and Urban Planning175, 34-49. https://doi.org/10.1016/j.landurbplan.2018.02.003 Mitsova D, Shuster W, Wang X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, 99(2): 141-153. https://doi.org/10.1016/j.landurbplan.2010.10.001 Mõisja, K., Uuemaa., E., Oja, T (2016). Integrating small-scale landscape elements into land use/cover:The impact on landscape metrics’ values, Ecological Indicators 67, 714-722. https://doi.org/10.1016/j.ecolind.2016.03.033 Morelli, F., Benedetti, Y., Šímová, P (2018). Landscape metrics as indicators of avian diversity and community measures, Ecological Indicators 90 (2018) 132-141. https://doi.org/10.1016/j.ecolind.2018.03.011 Muller, M. R., & Middleton, J (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9(2), 151-157. https://doi.org/10.1007/BF00124382 Myint, S. W., & Wang, L (2006). Multicriteria decision approach for land use land cover change using Markov chain analysis and a cellular automata approach. Canadian Journal of Remote Sensing, 32(6), 390-404. https://doi.org/10.5589/m06-032 Pan, Zh., Wang, G., Hu, Y., Cao, B (2019). Characterizing urban redevelopment process by quantifying thermal dynamic and landscape analysis, Habitat International 86, 61-70. https://doi.org/10.1016/j.habitatint.2019.03.004 Peng, J., Liu, Y., Liu, Z., Yang, Y (2017a). Mapping spatial non-stationarity of human-natural factors associated with agricultural landscape multifunctionality in Beijing-Tianjin- Hebei region,China.Agric.Ecosyst.Environ.246,221-233. https://doi.org/10.1016/j.agee.2017.06.007 Peng, J., Tian, L., Liu, Y., Zhao, M., Hu, Y., Wu, J (2017). Ecosystem services response to urbanization in metropolitan areas: thresholds identification. Sci. Total Environ. 607-608, 706-714. https://doi.org/10.1016/j.scitotenv.2017.06.218. Peng, J., Yang Y., Yanxu L., Yi'na H., Yueyue D., Jeroen M., Sijing Q (2018). Linking ecosystem services and circuit theory to identify ecological security patterns, Science of the Total Environment, 644 (2018) 281-790. https://doi.org/10.1016/j.scitotenv.2018.06.292 Sahu, S.K (2011). Localized food systems: the way towards sustainable livelihoods and ecological security- a review. J.Anim.Plant Sci.21(2),388-395. https://www.cabdirect.org/cabdirect/abstract/20113405569 Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W (2011). Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Mathematical and Computer Modelling, 54(3-4), 938-943. https://doi.org/10.1016/j.mcm.2010.11.019 Schwoertzig, E., Poulin, N., Hardion, L., & Trémolières, M. (2016). Plant ecological traits highlight the effects of landscape on riparian plant communities along an urban-rural gradient. Ecological Indicators, 61: 568-576. https://doi.org/10.1016/j.ecolind.2015.10.008 Serra-Llobet, A., Hermida, M. A (2017). Opportunities for green infrastructure under Ecuador's new legal framework. Landscape and Urban Planning. 159, 1-4. https://doi.org/10.1016/j.landurbplan.2016.02.004 Shi, Y., Li, J., Xie, M (2018). Evaluation of the ecological sensitivity and security of tidal flats in Shanghai, Ecological Indicators, 85.729-741. https://doi.org/10.1016/j.ecolind.2017.11.033 Sohl, T. L, and Claggett, P.R., (2013). Clarity versus complexity: Land-use modeling as a practical tool for decision-makers, Journal of Environmental Management, 129, 235-243. https://doi.org/10.1016/j.jenvman.2013.07.027 Su, S., Jiang, Z., Zhang, Q., & Zhang, Y. (2011). Transformation of agricultural landscapes under rapid urbanization: a threat to sustainability in Hang-Jia-Hu region, China. Applied Geography, 31, 439-449. https://doi.org/10.1016/j.apgeog.2010.10.008 Su, W. Gu, C. Yang, G. Chen, S. Zhen, F. (2010). Measuring the impact of urban sprawl on natural landscape pattern of the Western Taihu Lake watershed, China. Landscape and Urban Planning 95 (1-2): 61-67. https://doi.org/10.1016/j.landurbplan.2009.12.003 Su, Y., Chen, X., Liao, J., Zhang, H., Wang, C., Ye, Y., Wang, Y., (2016). Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 19, 35-46. https://doi.org/10.1016/j.ufug.2016.06.013 Subedi, P., Subedi, K., & Thapa, B (2013). Application of a hybrid cellular automaton-markov (CA-Markov) model in land-use change prediction: A case study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences, 1(6), 126-132. https://doi.org/10.12691/aees-1-6-5 Sui, D. Z., & Zeng, H (2001). Modeling the dynamics of landscape structure in Asia’s emerging desakota regions: a case study in Shenzhen, Landscape and Urban Planning, 53 (1), 37-52. https://doi.org/10.1016/S0169-2046(00)00136-5 Tayyebi, A., Pijanowski, B. C., & Tayyebi, A. H. (2011). An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landscape and Urban Planning, 100(1-2), 35-44. https://doi.org/10.1016/j.landurbplan.2010.10.007 Teng, M., Wu, C., Zhou, Z., Lord, E., Zheng, Z (2011). Multipurpose greenway planning for changing cities: a framework integrating priorities and a least-cost path model. Landsc. Urban Plann. 103,1-14. https://doi.org/10.1016/j.landurbplan.2011.05. Tsiouri, V., Kakosimos, K.E., Kumar, P (2015). Concentrations, sources and exposure risks associated with particulate matter in the Middle East Area-a review. Air Quality, Atmosphere & Health 8 (1), 67-80. https://doi.org/10.1007/s11869-014-0277-4 Upadhyay, T., Solberg, B., and Sankhayan, P. L, (2006). Use of models to analyses land-use changes, forest/soil degradation and carbon sequestration with special reference to Himalayan region: A review and analysis, Forest Policy and Economics, 9, 4, 349-371. https://doi.org/10.1016/j.forpol.2005.10.003 Valeria, B., Facundo, S., Virginia, C., Marina, H (2015). Ecosystem loss assessment following hydroelectric dam flooding: The case of Yacyretá, Argentina, Remote Sensing Applications: Society and Environment, 1, 50-60. https://doi.org/10.1016/j.rsase.2015.06.003 Vanderhaegen,S.,Canters,Frank., (2017). Mapping urban form and function at city block level using spatial metrics, Landscape and Urban Planning 167, 399-409. https://doi.org/10.1016/j.landurbplan.2017.05.023 Vorosmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., Davies, P.M. (2010). Global threats to human water security and river biodiversity. Nature 467 (7315), 555-561. https://doi.org/10.1038/nature09440 Wang Y, Mitchell BR, Nugranad-Marzilli J, Bonynge G, Zhou Y, Shriver G (2009). Remote sensing of land-cover change and landscape context of the National Parks: A case study of the Northeast Temperate Network. Remote Sensing of Environment, 113(7): 1453-1461. https://doi.org/10.1016/j.rse.2008.09.017 Wang, H, Qin, F., Zhang, X (2019). A spatial exploring model for urban land ecological security based on a modified artificial bee colony algorithm, Ecological Informatics 50 (2019) 51-61. https://doi.org/10.1016/j.ecoinf.2018.12.009 Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S (2012). Electronics & optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11), 699-712. https://doi.org/10.1038/nnano.2012.193 Weber, N., Haaseb, D., Franck, U (2014). Traffic-induced noise levels in residential urban structures usinglandscape metrics as indicators, Ecological Indicators 45,611-621. https://doi.org/10.1016/j.ecolind.2014.05.004 Wolfram, S. (1984). Cellular automata as models of complexity. Nature311.5: 419-424. https://doi.org/10.1038/311419A0 Wu, J., Adams, R. M., Kling, C. L., & Tanaka, K. (2004). From microlevel decisions to landscape changes: an assessment of agricultural conservation policies. American Journal of Agricultural Economics, 86(1), 26-41. https://ideas.repec.org/a/oup/ajagec/v86y2004i1p26-41.html Wu, X., Liu, S., Sun, Y., An, Y., Dong, Sh., Liu., G (2019). Ecological security evaluation based on entropy matter-element model: A case study of Kunming city, southwest China, Ecological Indicators 102, 469-478. https://doi.org/10.1016/j.ecolind.2019.02.057 Wyman, M. S; Stein, T.V; (2010). Modeling social and land-use/land-cover change data to assess drivers of smallholder deforestation in Belize, Applied Geography, Vol.30, No.3: 329-342. https://doi.org/10.1016/j.apgeog.2009.10.001 Xiao, DN., Chen, WB,, Guo, FL (2002). On the basic concepts and contents of ecological security. Chinese Journal Applied Ecology 13(3):354-358. http://www.cjae.net/EN/Y2002/V/I3/354 Yang, Q., Li, X., & Shi, X (2008). Cellular automata for simulating land use changes based on support vector machines. Computers & geosciences, 34(6), 592-602. https://doi.org/10.1016/j.cageo.2007.08.003 Yang, Y., Hu, C., & Abu-Omar, M. M (2012). Conversion of glucose into furans in the presence of AlCl 3 in an ethanol-water solvent system. Bioresource technology, 116, 190-194. https://doi.org/10.1016/j.biortech.2012.03.126 Yu, K.(1996). Security patterns and surface model in landscape ecological planning. Landscape Urban Plann. 36, 1-17. https://doi.org/10.1016/S0169-2046(96)00331-3. Yu, M., Huang, Y., Cheng, X., Tian, J (2019) . An ArcMap plug-in for calculating landscape metrics of vector data, Ecological Informatics, 50, 207-219. https://doi.org/10.1016/j.ecoinf.2019.02.004 Zhaoxue, L.Linyu X (2010). Evaluation indicators for urban ecological security based on ecological network analysis. International Society for Environmental Information Sciences 2010 Annual Conference. Procedia Environmental Sciences, 2(10) . 1399-393. https://doi.org/10.1016/j.proenv.2010.10.151 Zheng, Zh., Du, Sh.,Wang, Y.Ch., Wang, Q (2018). Mining the regularity of landscape-structure heterogeneity to improve urban land-cover mapping, Remote Sensing of Environment, 214, 14-32. https://doi.org/10.1016/j.rse.2018.05.019 Zhou, K., Liu, Y., Tan, R., Song, Y (2014). Urban dynamics, landscape ecological security, and policy implications: A case study from the Wuhan area of central China, Cities 41 141-153. https://doi.org/10.1016/j.cities.2014.06.010 | ||
آمار تعداد مشاهده مقاله: 904 تعداد دریافت فایل اصل مقاله: 693 |