تعداد نشریات | 30 |
تعداد شمارهها | 691 |
تعداد مقالات | 6,782 |
تعداد مشاهده مقاله | 11,080,688 |
تعداد دریافت فایل اصل مقاله | 7,478,756 |
Type 2 adaptive fuzzy control approach applied to variable speed DFIG based wind turbines with MPPT algorithm | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 19، شماره 1، فروردین و اردیبهشت 2022، صفحه 31-45 اصل مقاله (692.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2022.6549 | ||
نویسندگان | ||
S. M. Hosseini* ؛ M. Manthouri | ||
Electrical and Electronic Engineering Department, Shahed University, Tehran, Iran | ||
چکیده | ||
In this research, a Type 2 adaptive fuzzy controller approach is formulated and designed to be applied to variable speed doubly fed induction generator-based wind turbines directly connected to the grid. It brings this study to evaluate the whole operation of the system to capture the highest rate of power in the wind turbines. The controlling approach is considered to keep the stator reactive power to the ideal value. In contrast to the other researches, here the controlling technique is developed through the nonlinear systems. By the aim of making progress in system operation, in contrast with the Type 1 adaptive fuzzy system, type two adaptive fuzzy theory is proposed to approximate a large number of uncertainties and the dynamic nonlinearities, exists in tracking errors which may limit the system performance. Feedback linearization control approach helps us to algebraically alter the system into a linearized plant. Thanks to the Lyapunov theorem, the introduced type two adaptive fuzzy approach is proved to meet the uniformly ultimately boundness (UUB) property. On the other hand, it results better tracking function. The simulation outputs represent that the proposed technique is robust enough in presence of parameter variations and unstructured uncertainties. | ||
کلیدواژهها | ||
Adaptive؛ Type 2 fuzzy؛ DFIG؛ wind turbine؛ variable speed | ||
مراجع | ||
[1] S. Andersson, A. Söderberg, S. Björklund, Friction models for sliding dry, boundary and mixed lubricated contacts, Tribology International, 40(4) (2007), 580-587.
[2] A. Bektache, B. Boukhezzar, Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization, International Journal of Electrical Power and Energy Systems, 101 (2018), 92-102.
[3] B. Beltran, M. E. H. Benbouzid, T. Ahmed-Ali, High-order sliding mode control of a DFIG-based wind turbine for power maximization and grid fault tolerance, Conference: Electric Machines and Drives Conference, 2009. IEMDC ’09. IEEE International, 2009.
[4] B. Beltran, M. E. H. Benbouzid, T. Ahmed-Ali, Second-order sliding mode control of a doubly-fed induction generator driven wind turbine, IEEE Transactions on Energy Conversion, 27(2) (2012), 261-269.
[5] Z. Boudjema, A. Meroufel, E. Bounadja, Y. Djeriri, Nonlinear control of a doubly-fed induction generator supplied by a matrix converter for wind energy conversion systems, Journal of Electrical Engineering, 13 (2013), 60-68.
[6] Z. Boudjema, T. Rachid, Y. Djeriri, A. Yahdou, A novel direct torque control using second order continuous sliding mode of a doubly-fed induction generator for a wind energy conversion system, Turkish Journal of Electrical Engineering and Computer Sciences, 25 (2017), 965-975.
[7] B. Boukhezzar, H. Siguerdidjane, Nonlinear control of a variable-speed wind turbine using a two-mass model, IEEE Transactions on Energy Conversion, 26 (2011), 149-162.
[8] A. Boulkroune, N. Bounar, M. M′Saad, M. Farza, Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: A novel SPR-filter approach, Neurocomputing, 135 (2014), 378-387, Doi: 10.1016/j.neucom.2013.12.011.
[9] A. Boulkroune, M. M′Saad, H. Chekireb, Design of a fuzzy adaptive controller for MIMO nonlinear time-delay systems with unknown actuator nonlinearities and unknown control direction, Information Sciences, 180(24) (2010), 5041-5059.
[10] A. Boulkroune, M. Tadjine, M. M′Saad, M. Farza, How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems, Fuzzy Sets and Systems, 159(8) (2008), 926-948.
[11] E. Bounadja, A. Djahbar, Z. Boudjema, Variable structure control of a doubly-fed induction generator for wind energy conversion systems, Energy Procedia, 50 (2014), 999-1007.
[12] N. Bounar, A. Boulkroune, F. Boudjema, Adaptive fuzzy control of doubly-fed induction machine, Control Engineering and Applied Informatics, 16 (2014), 98-110.
[13] N. Bounar, A. Boulkroune, F. Boudjema, M. M′Saad, M. Farza, Adaptive fuzzy vector control for a doubly-fed induction motor, Neurocomputing, 151 (2015), 756-769.
[14] N. Bounar, S. Labdai, A. Boulkroune, M. Farza, M. M′Saad, Adaptive fuzzy control scheme for variable-speed wind turbines based on a doubly-fed induction generator, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44 (2020), 629-641.
[15] H. Chaoui, P. Sicard, Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction, IEEE Transactions on Industrial Electronics, 59(2) (2012), 1123-1133.
[16] M. Ghaemi, M. R. Akbarzadeh Totonchi, Indirect adaptive interval type-2 PI sliding mode control for a class of uncertain nonlinear systems, Iranian Journal of Fuzzy Systems, 11(5) (2014), 1-21.
[17] B. Kiruthiga, Implementation of first order sliding mode control of active and reactive power for DFIG based wind turbine, International Journal of Informative and Futuristic Research, 2(8) (2015), 2487-2497.
[18] X. Liu, Y. Han, C. Wang, Second-order sliding mode control for power optimisation of DFIG-based variable speed wind turbine, IET Renewable Power Generation, 11(2) (2017), 408-418.
[19] M. I. Martinez, A. Susperregui, G. Tapia, Second-order sliding-mode-based global control scheme for wind turbinedriven DFIGs subject to unbalanced and distorted grid voltage, IET Electric Power Applications, 11(6) (2017), 1013-1022.
[20] J. W. Moon, J. Gwon, J. W. Park, D. W. Kang, J. M. Kim, Feedback linearization control of doubly-fed induction generator under an unbalanced voltage, 8th International Conference on Power Electronics - ECCE Asia, (2011), 662-669.
[21] K. A. Naik, C. P. Gupta, E. Fernandez, Design and implementation of interval type-2 fuzzy logic-PI based adaptive controller for DFIG based wind energy system, International Journal of Electrical Power and Energy Systems, 115 (2020), 105468.
[22] F. A. Okou, O. Akhrif, M. Tarbouchi, Design of a nonlinear robust adaptive controller for a grid-connected doublyfed induction generator wind turbine, in 18th Mediterranean Conference on Control and Automation, MED10, (2010), 1603-1608.
[23] F. Poitiers, T. Bouaouiche, M. Machmoum, Advanced control of a doubly-fed induction generator for wind energy conversion, Electric Power Systems Research, 79 (2009), 1085-1096.
[24] M. M. Polycarpou, P. A. Ioannou, A robust adaptive nonlinear control design, in 1993 American Control Conference, (1993), 1365-1369.
[25] A. Sid Ahmed El Mehdi, M. ABID, Fuzzy sliding mode control applied to a doubly fed induction generator for wind turbines, Turkish Journal of Electrical Engineering and Computer Sciences, 23 (2015), 1673-1686, Doi: 10.3906/elk1404-64.
[26] O. Soares, H. Gon¸calves, A. Martins, A. Carvalho, Nonlinear control of the doubly-fed induction generator in wind power systems, Renewable Energy, 35(8) (2010), 1662-1670.
[27] A. Tohidi, H. Hajieghrary, M. A. Hsieh, Adaptive disturbance rejection control scheme for DFIG-based wind turbine: Theory and experiments, IEEE Transactions on Industry Applications, 52(3) (2016), 2006-2015.
[28] L. X. Wang, Adaptive fuzzy systems and control: Design and stability analysis, Prentice-Hall, 1994.
[29] B. Yang, L. Jiang, L. Wang, W. Yao, Q. H. Wu, Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine, International Journal of Electrical Power and Energy Systems, 74 (2016), 429-436.
[30] B. Yang, X. Zhang, T. Yu, H. Shu, Z. Fang, Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine, Energy Conversion and Management, 133 (2017), 427-443. | ||
آمار تعداد مشاهده مقاله: 943 تعداد دریافت فایل اصل مقاله: 768 |