تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,160 |
تعداد مشاهده مقاله | 9,108,508 |
تعداد دریافت فایل اصل مقاله | 5,940,025 |
Arithmetic operations and ranking of hesitant fuzzy numbers by extension principle | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 9، دوره 19، شماره 1، فروردین و اردیبهشت 2022، صفحه 97-114 اصل مقاله (472.01 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2022.6554 | ||
نویسندگان | ||
M. Ranjbar* ؛ S. M. Miri؛ S. Effati | ||
Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran | ||
چکیده | ||
A hesitant fuzzy number (HFN) is important as a generalization of the fuzzy number for hesitant fuzzy analysis and takes some applications that were discussed in recent literature. In this paper, we develop the hesitant fuzzy arithmetic, which is based on the extension principle for hesitant fuzzy sets. Employing this principle, standard arithmetic operations on fuzzy numbers are extended to HFNs and we show that the outcome of these operations on two HFNs are an HFN. Also we use the extension principle in HFSs for the ranking of HFNs, which may be an interesting topic. In this paper, we show that the HFNs can be ordered in a natural way. To introduce a meaningful ordering of HFNs, we use a new lattice operation on HFNs based upon extension principle and defining the Hamming distance on them. Finally, the applications of them are explained on optimization and decision-making problems. | ||
کلیدواژهها | ||
Hesitant fuzzy number؛ extension principle on hesitant fuzzy sets؛ arithmetic operations on hesitant fuzzy number؛ ordering of hesitant fuzzy numbers | ||
آمار تعداد مشاهده مقاله: 423 تعداد دریافت فایل اصل مقاله: 541 |