Construction of 2-uninorms on bounded lattices

A. Xie¹ and Z. Yi²

¹Department of Mathematics, School of Science, Nanchang University, Nanchang, Jiangxi, 330031, China
²College of Mathematics and Information Science, Nanchang Normal University, Nanchang, Jiangxi, 330031, China

Abstract

Uninorms and nullnorms are special 2-uninorms. In this work, we construct 2-uninorms on bounded lattices. Let \(L \) be a bounded lattice with a nontrivial element \(d \). Given two uninorms \(U_1 \) and \(U_2 \), defined on sublattices \([0,d]\) and \([d,1]\), respectively, this paper presents two methods for constructing binary operators on \(L \) which extend both \(U_1 \) and \(U_2 \). We show that our first construction is a 2-uninorm on \(L \) if and only if \(U_2 \) is conjunctive and our second construction is a 2-uninorm on \(L \) if and only if \(U_1 \) is disjunctive. Moreover, we prove that the two 2-uninorms are, respectively, the weakest and the strongest 2-uninorm among all 2-uninorms, the restrictions of which on \([0,d]^2\) and \([d,1]^2\) are respectively \(U_1 \) and \(U_2 \).

Keywords: Bounded lattices, 2-uninorms, uninorms, nullnorms.

1 Introduction

By allowing the identity element different from 0 and 1, Yager and Rybalov [12] introduced uninorms on the unit interval, which include triangular norms [21] (t-norms henceforth) and triangular conorms [20] (t-conorms henceforth) as special classes. Since then, uninorms have become important aggregation operators, which have applications in expert systems [10, 21, 30], fuzzy logic [25], and fuzzy systems modeling [11]. As an interesting mathematical construction, uninorms have been investigated by many researchers, see [13, 18, 23, 24, 51]. By allowing annihilator to be put anywhere in \([0,1]\), nullnorms (or t-operators) [6, 33] are another generalization of both t-norms and t-conorms. Later, Akella [1] proposed the important notion of a 2-uninorm, which has two local identity elements in \([0,1]\). 2-uninorms generalize uninorms and nullnorms and they have been applied in related fields such as [13]. Until now, 2-uninorms have attracted some research interests, see [13, 32, 33, 35, 37, 38, 40].

As a bounded lattice, the unit interval is sometimes too special and often cannot be adopted as the underlying value domain of many decision making tasks. Recently, several researchers have considered similar constructions on general bounded lattices. A series of works have been done for uninorms [3, 12, 13, 41, 42, 43, 44, 45, 46, 47], nullnorms [4, 11, 22, 24, 25], uni-nilnorms [37, 38, 39] and null-nilnorms [38].

Ertuğrul [21] considered 2-uninorms on a general bounded lattice. Let \((L,\leq)\) be a bounded lattice. Suppose \(d \) is a nontrivial element of \(L \), \(U_1 \) (\(U_2 \), resp.) a disjunctive (conjunctive, resp.) uninorm on \([0,d]\) (\([d,1]\), resp.). Ertuğrul [21] defined a 2-uninorm on \(L \) by extending \(U_1 \) and \(U_2 \) in a natural way. Furthermore, he showed that the construction could fail to be a 2-uninorm if either the disjunctivity or conjunctivity is not satisfied.

In this work, we consider a similar problem as in [21]. Let \((L,\leq)\) be a bounded lattice. Suppose \(d \) is a nontrivial element of \(L \). For any uninorm \(U_1 \) on \([0,d]\) and any uninorm \(U_2 \) on \([d,1]\), we construct two operators \(H_{U_1,U_2}^\lor \) and \(H_{U_1,U_2}^\land \) and show that \(H_{U_1,U_2}^\lor \) (\(H_{U_1,U_2}^\land \), resp.) is a 2-uninorm if and only if \(U_2 \) is conjunctive (\(U_1 \) is disjunctive, resp.). Moreover, we prove that for any 2-uninorm \(H \) on \(L \), if \(U_1 \) and \(U_2 \) are, respectively, the restrictions of \(H \) on \([0,d]^2\) and \([d,1]^2\), then \(H_{U_1,U_2} \leq H \leq H_{U_1,U_2}^\lor \). Our 2-uninorms on bounded lattices generalize 2-uninorms on the unit interval and also can be used to obtain uni-nullnorms, null-uninorms and nullnorms on bounded lattices. Moreover, using \(H_{U_1,U_2}^\lor \), we can obtain fuzzy implications on bounded lattices, which can be applied in lattice-valued fuzzy set theory.
In the remainder of this work, we first recall some preliminaries in Section 2, then present our constructions and main results in Section 3. A short conclusion as well as an outlook for future research is presented in Section 4.

2 Preliminaries

Our reference to basic notions and terminologies of lattice theory is [3]. Suppose \((L, \leq)\) is a lattice. The binary minimum (meet) and maximum (join) operations on \(L\) are denoted by \(\land\) and \(\lor\), respectively. A lattice \((L, \leq)\) is called a bounded lattice if there exist two elements 0 and 1 in \(L\) such that \(0 \leq x \leq 1\) for any \(x \in L\). We call 0 and 1, respectively, the bottom and the top of \(L\). For \(a_1, a_2 \in L\) with \(a_1 < a_2\), we define \([a_1, a_2] \equiv \{x \mid a_1 \leq x \leq a_2\}\). Similarly, we can define \((a_1, a_2)\), \((a_1, a_2)\) and \([a_1, a_2)\). In addition, we define \(I_d \equiv \{x \in L \mid x \text{ is incomparable with } d\}\).

Let \((L, \leq)\) be a lattice. Suppose \(F : L^2 \to L\) is a binary operator on \(L\). Assume \(L_1\) is a sublattice of \(L\), i.e., both \(a \lor b\) and \(a \land b\) are in \(L_1\) for any \(a, b \in L_1\). The restriction of \(F\) to \(L_1^2\) is denoted as \(F_{|L_1^2}\). In general, \(F(a, b)\) is not necessarily an element in \(L_1\) despite that \(a, b\) are both in \(L_1\). In case that \(L_1\) is closed under \(F\), i.e., \(F(a, b) \in L_1\) for any \(a, b \in L_1\), we write \(F_{|L_1}\) to denote the restriction of \(F\) to \(L_1^2\), which is a binary operator on \(L_1\). Suppose there is another binary operation \(F'\) on \(L_1\) such that \(F'(a, b) = F(a, b)\) for all \(a, b \in L_1\). Then \(F\) is called an extension of \(F'\) on \(L\), or \(F\) extends \(F'\) on \(L\).

In the remainder of this paper, we always denote a bounded lattice \((L, \leq, 0, 1)\) simply as \(L\).

All operators considered in this paper are AMC operators in the following sense.

Definition 2.1. [1] Assume \(L\) is a bounded lattice. An operator \(F : L^2 \to L\) is an AMC operator if \(F\) is associative, commutative, and non-decreasing in both variables.

Definition 2.2. [16, 27] Assume \(L\) is a bounded lattice. An AMC operator \(F\) on \(L\) is called a triangular norm (t-norm) if 1 is the identity element of \(F\), i.e., \(F(1, a) = a\) for any \(a \in L\). Analogously, we say \(F\) is a triangular conorm (t-conorm) if 0 is the identity element of \(F\), i.e., \(F(0, a) = a\) for any \(a \in L\).

The following example gives two special t-norms (t-conorms).

Example 2.3. [26, 27] Assume \(L\) is a bounded lattice. Define

\[
T_M(a, b) = a \land b,
\]
\[
T_D(a, b) = \begin{cases}
 a, & \text{if } b = 1 \\
 b, & \text{if } a = 1 \\
 0, & \text{otherwise}
\end{cases}
\]
\[
S_D(a, b) = \begin{cases}
 a, & \text{if } b = 0 \\
 b, & \text{if } a = 0 \\
 1, & \text{otherwise}
\end{cases}
\]
\[
S_M(a, b) = a \lor b.
\]

\(T_M\) (\(T_D\), resp.) is the strongest (weakest, resp.) t-norm on \(L\) and \(S_D\) (\(S_M\), resp.) is the strongest (weakest, resp.) t-conorm on \(L\).

Both t-norms and t-conorms are special uninorm operators.

Definition 2.4. [23, 27, 30] A binary operator \(F : L^2 \to L\) on a bounded lattice \(L\) is a nullnorm on \(L\) if it is an AMC operator and has an annihilator \(b \in L\) such that \(F(0, x) = x\) for any \(x \leq b\) and \(F(1, y) = y\) for any \(y \geq b\).

Every t-conorm \(S\) is a nullnorm with annihilator 1 and every t-norm \(T\) is a nullnorm with annihilator 0.

Definition 2.5. [26, 27] A binary operator \(U : L^2 \to L\) on a bounded lattice \(L\) is called a uninorm on \(L\) if \(U\) is an AMC operator and has an identity element \(e\) in \(L\), i.e., \(U(e, x) = x\) for all \(x \in L\). If \(U(0, 1) = 0\), we say \(U\) is conjunctive; if \(U(0, 1) = 1\), we say \(U\) is disjunctive.

Every t-conorm \(S\) (t-norm \(T\), resp.) on \(L\) is a uninorm with identity element 0 (1, resp.).
Let L be a bounded lattice and $e \in L \setminus \{0, 1\}$. Then $U_{sc} : L^2 \to L$ and $U_{sc} : L^2 \to L$, respectively, are the weakest and strongest uninorms on L with neutral element e \cite{20}, where

$$U_{sc}(x, y) = \begin{cases}
 x \lor y, & \text{if } (x, y) \in [e, 1]^2 \\
 x \land y, & \text{if } (x, y) \in [0, e) \times [e, 1] \cup [e, 1] \times [0, e) \\
 y, & \text{if } (x, y) \in [e, 1] \times I_e \\
 x, & \text{if } (x, y) \in I_e \times [e, 1] \\
 0, & \text{otherwise,}
\end{cases}$$

$$U_{id}(x, y) = \begin{cases}
 x \land y, & \text{if } (x, y) \in [0, e]^2 \\
 x \lor y, & \text{if } (x, y) \in [0, e) \times [e, 1] \cup [e, 1] \times [0, e) \\
 y, & \text{if } (x, y) \in [e, 1] \times I_e \\
 x, & \text{if } (x, y) \in I_e \times [0, e] \\
 1, & \text{otherwise.}
\end{cases}$$

Obviously, U_{sc} is conjunctive and U_{id} is disjunctive.

Proposition 2.6. \cite{21} Suppose U is a uninorm on a bounded lattice L with identity element $e \neq 0, 1$. Then the restriction of U on $[0, e]^2$ (or $[e, 1]^2$, resp.) is a t-norm (t-conorm, resp.) on $[0, e]$ (or $[e, 1]$, resp.).

Definition 2.7. \cite{11, 16} A binary operator $H : L^2 \to L$ on a bounded lattice L is a 2-uninorm if H is an AMC operator and there exist e_1, e_2 and $d \in (0, 1)$ in L such that $0 \leq e_1 \leq d \leq e_2 \leq 1$ and $H(x, e_1) = x$ for any $x \leq d$ and $H(y, e_2) = y$ for any $y \geq d$. We call d the cutpoint and call e_1, e_2 the first and, respectively, second local identity elements of H.

Definition 2.8. \cite{33} A 2-uninorm with $e_2 = 1$ is called a uni-nullnorm, and a 2-uninorm with $e_1 = 0$ is called a null-uninorm.

Assume H is a 2-uninorm on L with local identity elements $e_1 \leq e_2$ and cutpoint d. Let U_1 and U_2 be the restrictions of H to $[0, d]^2$ and $[d, 1]^2$, respectively. Clearly, U_1 (U_2, resp.) is a uninorm on $[0, d]$ ($[d, 1]$, resp.) and e_1 (e_2, resp.) is its identity element.

Obviously, uninorms, nullnorms, uni-nullnorms and null-uninorms are all special 2-uninorms.

Theorem 2.9. \cite{21} Let L be a bounded lattice, $U_1 : [0, d]^2 \to [0, d]$ be a disjunctive uninorm with neutral element e_1 and $U_2 : [d, 1]^2 \to [d, 1]$ be a conjunctive uninorm with neutral element e_2. Then the function $U^2 : L^2 \to L$ given by

$$U^2(x, y) = \begin{cases}
 U_1(x, y), & (x, y) \in [0, d]^2 \\
 U_2(x, y), & (x, y) \in [d, 1]^2 \\
 d, & \text{otherwise}
\end{cases}$$

is a 2-uninorm.

3 2-uninorms on bounded lattices

Let L be a bounded lattice. Suppose $e_1, e_2, d \in L$ with $0 \leq e_1 \leq d \leq e_2 \leq 1$ and $0 < d < 1$. Assume further that U_1 is a uninorm on $[0, d]$ with identity element e_1 and U_2 is a uninorm on $[d, 1]$ with identity element e_2. We give two methods for constructing 2-uninorms by extending U_1 and U_2. The first extension, denoted H_{U_1, U_2}^\wedge, is a 2-uninorm if and only if U_2 is a conjunctive uninorm; the second extension, denoted H_{U_1, U_2}^\vee, is a 2-uninorm if and only if U_1 is a disjunctive uninorm.

3.1 The weakest 2-uninorm H_{U_1, U_2}^\wedge

The construction of the first extension is illustrated in Fig. \ref{fig:3}.\ref{fig:3}.

Theorem 3.1. Let L be a bounded lattice. Suppose $e_1, e_2, d \in L$ with $0 < d < 1$ and $0 \leq e_1 \leq d < e_2 \leq 1$. Assume further that U_1 is a uninorm on $[0, d]$ with identity element e_1 and U_2 is a uninorm on $[d, 1]$ with identity element e_2. Then the operator H_{U_1, U_2}^\wedge given by

$$H_{U_1, U_2}^\wedge(x, y) = \begin{cases}
 U_2(x, y), & \text{if } (x, y) \in [d, 1]^2 \\
 U_1(x \land d, y \land d), & \text{otherwise}
\end{cases}$$

is a 2-uninorm on L if and only if U_2 is a conjunctive uninorm.

Proof. To simplify the presentation, we use, in (and only in) this proof, $x \circ y$ to denote the binary operation H_{U_1, U_2}^\wedge of any two elements $x, y \in L$, i.e., $x \circ y \equiv H_{U_1, U_2}^\wedge(x, y)$.

Clearly, suppose $A. Xie, Z. Yi$

Suppose $y = 1$. If $y \in x$, then also $d = U_2(x, y)$.

To sum up, we only need to prove H is commutative and satisfies $H(x, y) = H(y, x)$.

We prove that H is a 2-uninorm with cutpoint d and local identity elements e_1, e_2.

Note that we can rewrite H_{U_1, U_2} as

$$x \cdot y = \begin{cases}
U_1(x, y), & \text{if } (x, y) \in [0, d]^2 \\
U_2(x, y), & \text{if } (x, y) \in [d, 1]^2 \\
U_1(d, y \land d), & \text{if } (x, y) \in [d, 1] \times I_d \\
U_1(x \land d), & \text{if } (x, y) \in I_d \times [d, 1] \\
U_1(x, d), & \text{if } (x, y) \in [0, d] \times [d, 1] \\
U_1(d, y), & \text{if } (x, y) \in [d, 1] \times [0, d] \\
U_1(x, y \land d), & \text{if } (x, y) \in [0, d] \times I_d \\
U_1(x \land d, y), & \text{if } (x, y) \in I_d \times [0, d] \\
U_1(x \land d, y \land d), & \text{if } (x, y) \in I_d \times [d, 1].
\end{cases} \quad (4)$$

Clearly, \circ is commutative and satisfies $x \circ e_1 = U_1(x, e_1) = x$ for any $x \in [0, d]$ and $x \circ e_2 = U_2(x, e_2) = x$ for any $x \in [d, 1]$. It remains to prove its monotonicity and associativity. Let us first consider the monotonicity. For any $x, y, z \in L$, suppose $x \leq y$. We show $x \circ z \leq y \circ z$. The monotonicity clearly holds if $y, z \in [d, 1]$. Since $x \leq y$ we see that if $y \not\in [d, 1]$, then also $x \not\in [d, 1]$ and $x \circ z = U_1(x \land d, z \land d) \leq U_1(y \land d, z \land d) = y \circ z$. The same holds if $z \not\in [d, 1]$. Finally, if $x \not\in [d, 1]$ and $y, z \in [d, 1]$, then $x \circ z = U_1(x \land d, y \land d) \leq d \leq U_2(y, z) = y \circ z$.

To show the associativity, we only need to prove $x \circ (y \circ z) = (x \circ y) \circ z$, for any $x, y, z \in L$.

If $x, y, z \in [d, 1]$, the associativity is clear. Otherwise, it is enough to show that in all remaining cases

$$x \circ (y \circ z) = U_1(x \land d, U_1(y \land d, z \land d)),$$

and

$$(x \circ y) \circ z = U_1(U_1(x \land d, y \land d), z \land d).$$

If fact, if $y, z \in [d, 1]$, then $x \not\in [d, 1]$ and $x \circ (y \circ z) = U_1(x \land d, U_2(y, z) \land d) = U_1(x \land d, d) = U_1(x \land d, U_1(y \land d, z \land d))$. If $y \not\in [d, 1]$ or $z \not\in [d, 1]$, then $y \circ z = U_1(y \land d, z \land d) \leq d$. Especially, when $y \circ z \leq d$, we obtain $x \circ (y \circ z) = U_1(x \land d, U_1(y \land d, z \land d))$. When $y \circ z = d$ and $x \not\in [d, 1]$, then $x \circ (y \circ z) = x \circ d = U_2(x, d) = d = U_1(d, d) = U_1(x \land d, d) = U_1(x \land d, U_1(y \land d, z \land d))$. To sum up, $x \circ (y \circ z) = U_1(x \land d, U_1(y \land d, z \land d))$ if at least one of x, y and z is not in $[d, 1]$. Hence, the associativity follows from the associativity of U_1.

\[\Box\]
The next example illustrates the construction of \mathcal{H}_{U_1,U_2} in Theorem 3.1.

Example 3.2. Let $L_1 = \{0, a_1, a_2, a_3, d, a_4, e_2, a_5, 1, b_1, b_2, c_1, c_2, e_3, e_4\}$ be the bounded lattice shown in Fig. 2. Suppose U_1 (U_2) is a conjunctive uninorm on $[0, d]$ ($[d, 1]$) given by (cf. [13]):

$$U_1(x, y) = \begin{cases} S_M(x, y), & \text{if } (x, y) \in [e_1, d]^2 \\ y, & \text{if } (x, y) \in [e_1, d] \times I_{e_1} \\ x, & \text{if } (x, y) \in I_{e_1} \times [e_1, d] \\ T_D(x \land e_1, y \land e_1), & \text{otherwise,} \end{cases}$$

and

$$U_2(x, y) = \begin{cases} S_D(x, y), & \text{if } (x, y) \in [e_2, 1]^2 \\ y, & \text{if } (x, y) \in [e_2, 1] \times I_{e_2} \\ x, & \text{if } (x, y) \in I_{e_2} \times [e_2, 1] \\ T_M(x \land e_2, y \land e_2), & \text{otherwise.} \end{cases}$$

The 2-uninorm \mathcal{H}_{U_1,U_2}, as defined in Theorem 3.1, is given by Table 1.

![Figure 2: The bounded lattice L_1](image)

Remark 3.3. (i) In Theorem 3.1, d is required to be less than e_2. Otherwise, U_2 becomes a t-conorm and it cannot be conjunctive.

(ii) If U_2 is conjunctive and L is the unit interval $[0, 1]$, then \mathcal{H}_{U_1,U_2} corresponds to the 2-uninorms constructed in [13]. Indeed, in this case we have $\mathcal{H}_{U_1,U_2}(0, 1) = \mathcal{H}_{U_1,U_2}(0, d) = U_1(0, d) = \{0, d\} \in \{0, d\}$. If $\mathcal{H}_{U_1,U_2}(0, 1) = d$, then it corresponds to the 2-uninorm defined in Theorem 4 of [13]. If $\mathcal{H}_{U_1,U_2}(0, 1) = 0$, then, by $\mathcal{H}_{U_1,U_2}(1, d) = d$, this 2-uninorm corresponds to the one introduced in Theorem 5 of [13].

It is interesting to find that \mathcal{H}_{U_1,U_2} is the weakest one among all 2-uninorms which have the same restrictions on $[0, d]^2$ and $[d, 1]^2$.

Theorem 3.4. Let L be a bounded lattice with elements e_1, e_2, d in L such that $0 < d < 1$ and $0 \leq e_1 \leq d < e_2 \leq 1$. Suppose U_1 is a uninorm on $[0, d]$ with identity element e_1 and U_2 is a conjunctive uninorm on $[d, 1]$ with identity element e_2. Then U_1 and U_2 are, respectively, the restrictions of \mathcal{H}_{U_1,U_2} on $[0, d]^2$ and $[d, 1]^2$. Moreover, for any 2-uninorm \mathcal{H} on L which extends both U_1 and U_2, we have $\mathcal{H} \geq \mathcal{H}_{U_1,U_2}$.

Proof. By construction, U_1 (U_2, resp.) is clearly the restriction of \mathcal{H}_{U_1,U_2} on $[0, d]^2$ ($[d, 1]^2$, resp.). Suppose \mathcal{H} is also a 2-uninorm which extends both U_1 and U_2. Clearly, for any $(x, y) \in [0, d]^2 \cup [d, 1]^2$, $\mathcal{H}(x, y) = \mathcal{H}_{U_1,U_2}(x, y)$. For any $(x, y) \in [0, 1]^2 \setminus ([0, d]^2 \cup [d, 1]^2)$, we have

$$\mathcal{H}(x, y) \geq \mathcal{H}(x \land d, y \land d) = U_1(x \land d, y \land d) = \mathcal{H}_{U_1,U_2}(x, y)$$

as \mathcal{H} is non-decreasing. Thus, $\mathcal{H} \geq \mathcal{H}_{U_1,U_2}$. \qed
Indeed, since $H \in [0, 1]$ uninorm and $\leq e_1 \leq d$, $\leq e_2 \leq 1$. Clearly, H is an arbitrary uninorm on $[0, 1]$. Corollary 3.5. Suppose H is a disjunctive uninorm with identity element e_2 (cf. Eq.(1)). Then $H^{\wedge}_{U_1, U_2}$ is the weakest among all 2-uninorms that extend both U_1 and U_2. A stronger conclusion can be obtained if U_2 is selected to be the weakest uninorm on $[d, 1]$. Corollary 3.6. Let L be a bounded lattice with elements e_1, e_2, d such that $0 < d < 1$ and $0 \leq e_1 < d < e_2 \leq 1$. Suppose U is an arbitrary uninorm on $[0, d]$ and U_{\wedge} the weakest uninorm on $[d, 1]$ with identity element e_2 (cf. Eq.(1)). Then $H^{\wedge}_{U_1, U_2}$ is the weakest among all 2-uninorms that extend U and have cutpoint d and local identity elements e_1, e_2 on L.

It is necessary to point out that for any 2-uninorm H on a bounded lattice L, $H(0, 1) = a$ is always its annihilator. Indeed, since $H(0, 0) = 0$ and $H(1, 1) = 1$, we get $H(a, 0) = H(0, a) = H(0, 1) = H(0, 0, 1) = H(0, 1) = a$, and similarly $H(1, a) = H(a, 1) = a$. Then the monotonicity for every $x \in L$ gives $a = H(a, 0) \leq H(a, x) \leq H(0, a, 1) = H(0, 1) = a$, i.e., $H(x, a) = H(a, x) = a$. If U_1 is disjunctive in Theorem 3.1, then $d = U_1(x, d) = H^{\wedge}_{U_1, U_2}(x, d)$ for any $x \in [0, d]$, i.e., d is also the annihilator of $H^{\wedge}_{U_1, U_2}$ (see Corollary 3.6). In this case, U_1 is not a t-norm and therefore $0 < e_1 < d$.

In the below, for convenience, denote $X_d = ([0, d] \cup I_d) \times [d, 1] \cup [d, 1] \times ([0, d] \cup I_d)$.

Corollary 3.6. Let L be a bounded lattice with elements e_1, e_2, d such that $0 < d < 1$ and $0 \leq e_1 < d < e_2 \leq 1$. Suppose $U_1 : [0, d]^2 \to [0, d]$ is a disjunctive uninorm with identity element e_1 and $U_2 : [d, 1]^2 \to [d, 1]$ a conjunctive uninorm with identity element e_2. Then

$$H^{\wedge}_{U_1, U_2}(x, y) = \begin{cases} U_2(x, y), & \text{if } (x, y) \in [d, 1]^2 \\ d, & \text{if } (x, y) \in X_d \\ U_1(x \wedge d, y \wedge d), & \text{otherwise.} \end{cases}$$

Clearly, d is the annihilator of the 2-uninorm $H^{\wedge}_{U_1, U_2}$.

Remark 3.7. Corollary 3.6 has the same conditions as Theorem 1 of [21], i.e., both requiring that U_1 is a disjunctive uninorm and U_2 is a conjunctive uninorm. We find that $H^{\wedge}_{U_1, U_2}$ differs from the 2-uninorm U^2 of [21] only in the region $[0, d] \times I_d \cup I_d \times [0, d] \cup I_d^2$ since $U^2(x, y) = \begin{cases} U_1(x, y), & \text{if } (x, y) \in [0, d]^2 \\ U_2(x, y), & \text{if } (x, y) \in [d, 1]^2 \\ d, & \text{otherwise.} \end{cases}$

In case $e_1 = 0$ ($e_2 = 1$, resp.) in Theorem 3.1, then U_1 (U_2, resp.) becomes a t-conorm (t-norm, resp.). This yields a null-uninorm (a uni-nullnorm, resp.) on L.

Corollary 3.8. Let L be a bounded lattice with elements e, d such that $0 < d < e \leq 1$ and $0 < d < 1$. Suppose $U : [d, 1]^2 \to [d, 1]$ is a uninorm with identity element e and $S : [0, d]^2 \to [0, d]$ a t-conorm. Then

$$H^{\wedge}_{S, U}(x, y) = \begin{cases} U(x, y), & \text{if } (x, y) \in [d, 1]^2 \\ d, & \text{if } (x, y) \in X_d \\ S(x \wedge d, y \wedge d), & \text{otherwise.} \end{cases}$$

Table 1: The 2-uninorm $H^{\wedge}_{U_1, U_2}$ in Example 3.2
Moreover, the operator $H^{\wedge}_{S, U}$ is a null-uninorm on L if and only if U is a conjunctive uninorm. If U is a conjunctive uninorm, then the null-uninorm $H^{\wedge}_{S, U}$ is also the weakest among all null-uninorms that extend U and S with cutpoint d on L.

Remark 3.9. In Corollary 3.8, if $S = S_{M}$ and $U = U_{sc}$, then $H = H^{\wedge}_{S_{M}, U_{sc}}$ is the weakest among all null-uninorms on L with cutpoint d. Moreover, we have

$$H(x, y) = \begin{cases} U_{sc}(x, y), & \text{if } (x, y) \in [d, 1]^2 \\ d, & \text{if } (x, y) \in X_{d} \\ (x \wedge d) \lor (y \wedge d), & \text{otherwise.} \end{cases} \quad (9)$$

Corollary 3.10. Let L be a bounded lattice with elements e, d such that $0 \leq e \leq d \leq 1$ and $0 \leq d < 1$. Suppose U is a uninorm on $[0, d]$ with identity element e and T a t-norm on $[d, 1]$. Then 2-uninorm $H^{\lor}_{U, T}$ on L is a uni-nullnorm. Indeed, $H^{\lor}_{U, T}$ is the weakest among all uni-nullnorms that extend U and T with cutpoint d on L.

Remark 3.11. (i) The result of Corollary 3.10 is the one of Theorem 3.1 in [39].

(ii) In Corollary 3.10, if $U = U_{sc}$ and $T = T_{D}$, then $H = H^{\lor}_{U_{sc}, T_{D}}$ is the weakest uni-nullnorm among all uni-nullnorms on L with cutpoint d and local identity element e.

Taking $e = 1$ in Corollary 3.8 or $e = 0$ in Corollary 3.10, we obtain the nullnorm on L constructed in [22].

3.2 The strongest 2-uninorms $H^{\lor}_{U_{1}, U_{2}}$

In the previous section, we have defined a 2-uninorm which is the weakest 2-uninorm with given underlying functions. Dually, we can construct the strongest one in a similar way. The construction is illustrated in Fig. 3.

![Figure 3: The structure of the 2-uninorm $H^{\lor}_{U_{1}, U_{2}}$ in Eq. (10)](image)

Theorem 3.12. Let L be a bounded lattice with elements e_{1}, e_{2}, d such that $0 \leq e_{1} < d \leq e_{2} \leq 1$ and $0 \leq d < 1$. Suppose $U_{1} : [0, d]^2 \to [0, d]$ is a uninorm with identity element e_{1} and $U_{2} : [d, 1]^2 \to [d, 1]$ a uninorm with identity element e_{2}. The binary operator $H^{\lor}_{U_{1}, U_{2}}$ given by

$$H^{\lor}_{U_{1}, U_{2}}(x, y) = \begin{cases} U_{1}(x, y), & \text{if } (x, y) \in [0, d]^2 \\ U_{2}(x \lor d, y \lor d), & \text{otherwise} \end{cases} \quad (10)$$

is a 2-uninorm on L if and only if U_{1} is a disjunctive uninorm.

Remark 3.13. (i) In Theorem 3.12, d is required to be greater than e_{1}. Otherwise, U_{1} is a t-norm and it cannot be disjunctive.

(ii) Suppose U_{1} is disjunctive. If L is the unit interval $[0, 1]$, then $H^{\lor}_{U_{1}, U_{2}}$ corresponds to the 2-uninorms constructed in [39, Theorems 4 & 6].

The 2-uninorm $H^{\lor}_{U_{1}, U_{2}}$ is the strongest among all 2-uninorms which extend U_{1} and U_{2} with cutpoint d.

Theorem 3.14. Let L be a bounded lattice with elements e_1, e_2, d such that $0 \leq e_1 < d \leq e_2 \leq 1$ and $0 < d < 1$. Suppose U_1 is a disjunctive uninorm on $[0,d]$ with identity element e_1 and U_2 a uninorm on $[d,1]$ with identity element e_2. Then U_1 and U_2 are, respectively, the restrictions of \mathcal{H}_1^\vee, U_2 on $[0,d]^2$ and $[d,1]^2$. Moreover, for any 2-uninorm H on L which extends both U_1 and U_2, we have $H \leq \mathcal{H}_1^\vee, U_2$.

A stronger conclusion can be reached if U_1 is the strongest uninorm on $[0,d]$.

Corollary 3.15. Let L be a bounded lattice with elements e_1, e_2, d such that $0 \leq e_1 < d < e_2 \leq 1$ and $0 < d < 1$. Suppose U is an arbitrary uninorm on $[d,1]$ with identity element e_2 and U_{id} the strongest uninorm on $[0,d]$ with identity element e_1 (cf. Eq.(2)). Then $\mathcal{H}_{1d, U}$ is the strongest among all 2-uninorms on L that extend U and have cutpoint d and local identity elements e_1, e_2.

In case U_2 is conjunctive, we have a finer representation for $\mathcal{H}_{1d, U}$, which directly implies that d is the annihilator of the 2-uninorm $\mathcal{H}_{1d, U}$. We denote $Y_d = [0,d] \times (I_d \cup [d,1])$.

Corollary 3.16. Let L be a bounded lattice with elements e_1, e_2, d such that $0 \leq e_1 < d < e_2 \leq 1$ and $0 < d < 1$. Suppose U_1 is a disjunctive uninorm on $[0,d]$ with identity element e_1 and U_2 a conjunctive uninorm on $[d,1]$ with identity element e_2. Then

$$\mathcal{H}_{1d, U_2}(x, y) = \begin{cases} U_1(x, y), & \text{if } (x, y) \in [0,d]^2 \\ d, & \text{if } (x, y) \in Y_d \\ U_2(x \lor d, y \lor d), & \text{otherwise.} \end{cases}$$

Clearly, d is the annihilator of \mathcal{H}_{1d, U_2}.

Remark 3.17. Similar to Remark 3.14, when compared with the 2-uninorm U^2 in [21], our 2-uninorm \mathcal{H}_{1d, U_2} differs only in the region $[d,1] \times I_d \cup I_d \times [d,1] \cup I_d^2$, where U^2 takes the fixed value d.

Corollary 3.18. Let L be a bounded lattice with elements e,d such that $0 \leq e < d < 1$ and $0 < d < 1$. Suppose $T : [d,1]^2 \to [d,1]$ is a t-norm and $U : [0,d]^2 \to [0,d]$ a uninorm with identity element e. Then

$$\mathcal{H}_{1d, T}(x, y) = \begin{cases} U(x, y), & \text{if } (x, y) \in [0,d]^2 \\ d, & \text{if } (x, y) \in Y_d \\ T(x \lor d, y \lor d), & \text{otherwise.} \end{cases}$$

Moreover, $\mathcal{H}_{1d, T}$ is a uni-nullnorm on L if and only if U is a disjunctive uninorm. If U is a disjunctive uninorm, then $\mathcal{H}_{1d, T}$ is indeed the strongest uni-nullnorm among all uni-nullnorms on L that extend U and T with cutpoint d.

Remark 3.19. (i) The result of Corollary 3.18 is the one of Theorem 4.1 in [32].

(ii) In Corollary 3.18, if $U = U_{id}$ and $T = T_M$, then $G = H_{1d,TM}$ is the strongest uni-nullnorm with cutpoint d and local identity element e. Moreover, we have

$$G(x,y) = \begin{cases} U_{id}(x,y), & \text{if } (x, y) \in [0,d]^2 \\ d, & \text{if } (x, y) \in Y_d \\ (x \lor d) \land (y \lor d), & \text{otherwise.} \end{cases}$$

Corollary 3.20. Let L be a bounded lattice, $e,d \in L$, $0 \leq d < e \leq 1$ and $0 < d < 1$. Suppose U is a uninorm on $[d,1]$ with identity element e and S a t-conorm on $[0,d]$. The 2-uninorm $\mathcal{H}_{1d, U}$ on L is a uninorm. Indeed, it is the strongest null-uninorm on L which extends both S and U with cutpoint d.

Remark 3.21. In Corollary 3.18, if $S = S_D$ and $U = U_{id}$, then $G = H_{1d,TM}$ is the strongest null-uninorm.

Taking $e = 1$ in Corollary 3.18 or $e = 0$ in Corollary 3.20, we obtain the nullnorm on L constructed in [22].

To illustrate the construction, we also give an example.

Example 3.22. Let $L_1 = \{0, a_1, a_2, a_3, d, a_4, c_2, a_5, 1, b_1, b_2, c_1, c_2, c_3, c_4\}$ be the bounded lattice defined in Fig. 2. Suppose T_{e_1} is a t-norm on $[0,e_1]$ and S_{e_2} a t-conorm on $[e_2,1]$. Consider the disjunctive uninorm U_1 on $[0,d]$ with identity element e_1 given by

$$U_1(x,y) = \begin{cases} T_{e_1}(x,y), & \text{if } (x, y) \in [0,e_1]^2 \\ y, & \text{if } (x, y) \in [0,e_1] \times ([0,d] \setminus [0,e_1]) \\ x, & \text{if } (x, y) \in ([0,d] \setminus [0,e_1]) \times [0,e_1] \\ h(x) \lor h(y), & \text{if } (x, y) \in ([0,d] \setminus [0,e_1])^2, \end{cases}$$
and the conjunctive uninorm \(U_2 \) on \([d, 1]\) with identity element \(e_2 \) given by

\[
U_2(x, y) = \begin{cases}
 S_{e_2}(x, y), & \text{if } (x, y) \in [e_2, 1]^2 \\
 y, & \text{if } (x, y) \in [e_2, 1] \times ([d, 1] \setminus [e_2, 1]) \\
 x, & \text{if } (x, y) \in ([d, 1] \setminus [e_2, 1]) \times [e_2, 1] \\
 g(x) \land g(y), & \text{otherwise},
\end{cases}
\]

where \(h \) is a closure operator and \(g \) is an interior operator, respectively (please see the definitions of closure operators and interior operators in [\ref{34}]). Then \(U_1 \) and \(U_2 \) are uninorms (see [Theorems 4.1 and 5.1, \ref{33}]).

Now, select \(T_{e_1} = T_M, h(x) = x, S_{e_2} = S_D, g(x) = x \). Then we obtain 2-uninorm \(\mathcal{H}_{U_1, U_2}^\gamma \) on \(L_1 \) given in Table 2.

| \(\mathcal{H}_{U_1, U_2}^\gamma \) | 0 | \(a_1 \) | \(e_1 \) | \(a_2 \) | \(a_3 \) | \(d \) | \(a_4 \) | \(e_2 \) | \(a_5 \) | 1 | \(b_1 \) | \(b_2 \) | \(c_1 \) | \(c_2 \) | \(c_3 \) | \(c_4 \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(a_1 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(e_1 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(a_2 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(a_3 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(d \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(a_4 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(e_2 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(a_5 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(b_1 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(b_2 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(c_1 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(c_2 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(c_3 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(c_4 \) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 2: The 2-uninorm \(\mathcal{H}_{U_1, U_2}^\gamma \) in Example 3.22

In [\ref{33}], the authors discuss the \((U^2, N)\)-operation \(I_{U^2, N} \) on the unit interval derived from a 2-uninorm \(U^2 \) and a fuzzy negation \(N \), where \(I_{U^2, N}(x, y) = U^2(N(x), y) \). They prove that \(I_{U^2, N} \) is a fuzzy implication if and only if the related 2-uninorm \(U^2 \) is disjunctive, i.e., \(U^2(0, 1) = 1 \).\footnote{For definitions of fuzzy implications and fuzzy negations, the reader can refer to [3, 33].}

Using our 2-uninorms, we can obtain fuzzy implications on bounded lattices as well. In fact, if \(U_1 \) and \(U_2 \) are disjunctive, then \(\mathcal{H}_{U_1, U_2}^\gamma \) is a disjunctive 2-uninorm. Therefore, analogously as in [\ref{13}], we can use such \(\mathcal{H}_{U_1, U_2}^\gamma \) to construct \((H, N)\)-implications \(I_{H, N} \) on bounded lattices by \(I_{H, N}(x, y) = \mathcal{H}_{U_1, U_2}^\gamma(N(x), y) \).

Example 3.23. Let \(L_2 = \{0, a_1, e_1, d, e_2, a_2, b_1, b_2, 1\} \) be the bounded lattice shown in Fig. 4. Define \(N : [0, 1] \to [0, 1] \) by

\[
N(x) = \begin{cases}
 1, & \text{if } x = 0 \\
 a_2, & \text{if } x = a_1 \\
 e_2, & \text{if } x = e_1 \\
 d, & \text{if } x \in \{d, b_1, b_2\} \\
 e_1, & \text{if } x = e_2 \\
 a_1, & \text{if } x = a_2 \\
 0, & \text{if } x = 1.
\end{cases}
\]

Clearly, \(N \) is a fuzzy negation on \(L_2 \). Let \(U_1 \) and \(U_2 \) be given, respectively, by

\[
U_1(x, y) = \begin{cases}
 T_M(x, y), & \text{if } (x, y) \in [0, e_1]^2 \\
 y, & \text{if } (x, y) \in [0, e_1] \times ([0, d] \setminus [0, e_1]) \\
 x, & \text{if } (x, y) \in ([0, d] \setminus [0, e_1]) \times [e_1, 1] \\
 x \lor y, & \text{if } (x, y) \in ([0, d] \setminus [0, e_1])^2.
\end{cases}
\]
\[U_2(x, y) = \begin{cases}
T_D(x, y), & \text{if } (x, y) \in [d, e_2]^2 \\
y, & \text{if } (x, y) \in [d, e_2] \times ([d, 1] \setminus [d, e_2]) \\
x_1, & \text{if } (x, y) \in ([d, 1] \setminus [d, e_2]) \times [d, e_2] \\
S_D(x \lor e_2, y \lor e_2), & \text{if } (x, y) \in ([d, 1] \setminus [d, e_2])^2.
\end{cases} \]

Then \(U_1 \) and \(U_2 \) are disjunctive, and fuzzy implication \(I_{H,N} \) on \(L_2 \) is given in Table 3. The fuzzy implication \(I_{H,N} \) can be useful for lattice-valued fuzzy set theory just as \((S,N) \)-implications on bounded lattices [2].

![Figure 4: Bounded lattice \(L_2 \)](image)

Table 3: The \(I_{U_2,N} \) in Example 3.23

<table>
<thead>
<tr>
<th>(I_{H,N})</th>
<th>0</th>
<th>(a_1)</th>
<th>(e_1)</th>
<th>(d)</th>
<th>(e_2)</th>
<th>(a_2)</th>
<th>1</th>
<th>(b_1)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(a_2)</td>
<td>(a_2)</td>
<td>(a_2)</td>
<td>(a_2)</td>
<td>(1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(a_2)</td>
</tr>
<tr>
<td>(e_1)</td>
<td>(d)</td>
<td>(d)</td>
<td>(d)</td>
<td>(e_2)</td>
<td>(a_2)</td>
<td>1</td>
<td>(a_2)</td>
<td>(e_2)</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>(a_2)</td>
<td>1</td>
<td>(a_2)</td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>(e_2)</td>
<td>0</td>
<td>(a_1)</td>
<td>(e_1)</td>
<td>(d)</td>
<td>(a_2)</td>
<td>1</td>
<td>(a_2)</td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>(a_2)</td>
<td>0</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(d)</td>
<td>(a_2)</td>
<td>1</td>
<td>(a_2)</td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(d)</td>
<td>(d)</td>
<td>1</td>
<td>(a_2)</td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>(b_1)</td>
<td>(d)</td>
<td>(d)</td>
<td>(d)</td>
<td>(d)</td>
<td>(a_2)</td>
<td>1</td>
<td>(a_2)</td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>(b_2)</td>
<td>(d)</td>
<td>(d)</td>
<td>(d)</td>
<td>(d)</td>
<td>(a_2)</td>
<td>1</td>
<td>(a_2)</td>
<td>(d)</td>
<td></td>
</tr>
</tbody>
</table>

4 Conclusion

For a bounded lattice \(L \) with elements \(0 \leq e_1 \leq d \leq e_2 \leq 1 \) and \(0 < d < 1 \), suppose \(U_1 \) is a uninorm on \([0, d]\) with identity element \(e_1 \) and \(U_2 \) a uninorm on \([d, 1]\) with identity element \(e_2 \). We constructed 2-uninorms on \(L \) by extending both \(U_1 \) and \(U_2 \). The two 2-uninorms, \(H_{U_1,U_2} \) and \(H_{U_1,U_2} \), are the weakest and the strongest 2-uninorms on \(L \) among all 2-uninorms that extend \(U_1 \) and \(U_2 \), respectively. Our constructions have also been adapted to construct uni-nullnorms and null-uninorms on \(L \).

As bounded lattices can be very different from the unit interval \([0,1]\), many nice properties fulfilled by 2-uninorms on \([0,1]\) may not hold. It is interesting to extend the classifications obtained in [10] and [16] to general bounded lattices. In addition, it is easy to see that neither \(H_{U_1,U_2} \) nor \(H_{U_1,U_2} \) is idempotent, in general. In the future, we will investigate idempotent 2-uninorms on bounded lattices.
Acknowledgement

The authors wish to express their appreciation for several excellent suggestions for improvements in this paper made by the referees. This work is supported by National Natural Science Foundation of China (No. 12061046).

References

