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This paper presents a new algorithm for the identification of a specific class of hybrid systems. Hybrid system identification 

is a challenging problem since it involves the estimation of discrete and continuous states simultaneously. Using the method 

known as the product of errors, this problem can be formulated such that the identification of continuous state is independent 

of discrete state estimation. We propose a new iterative weighted least squares algorithm (IWLS) for the identification of 

switched autoregressive exogenous systems (SARX). In the method, the parameters of only one subsystem are updated at each 

iteration while the parameters of the other subsystems are assumed known. The proposed method estimates, all four main 

parameters of hybrid systems, namely subsystem degrees, number of subsystems, unknown parameters vector, and the switching 

signal. The simulation results show that our proposed method has a good performance in identifying the parameters of the 

subsystems and the switching signal. Also, the superiority of our algorithm is demonstrated by modeling two SARX systems. 
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I. INTRODUCTION 

Hybrid systems are dynamic models that consist of discrete 

and continuous states. These systems are used when there 

is an interaction between physical systems and logic 

devices such as digital computers and can model physical 

phenomena that exhibit discontinuous behaviors. A hybrid 

system is a combination of several continuous subsystems, 

only one of which is active at any time instance. Continuous 

subsystems are connected through a discrete state variable 

called switching signal or discrete state. When the 

switching signal changes, switching occurs between the 

subsystems.  

Since the problem of hybrid system identification involves 

estimating sub-model parameters and how these sub-

models relate to each other with respect to the switching 

signal, it cannot be solved by classical identification 

methods, so solving this problem has gained much attention 

among researchers. Due to the development of applications 

of hybrid systems, much research has been done in the field 

of hybrid system identiification. The proposed methods 

have mostly been developed around piecewise affine 

(PWA) and affine switched (SA) systems. Roll et al. [1] 

used mixed integer linear or quadratic programming for the 

identification of PWA autoregressive exogenous 

(PWARX) systems by focusing on hinging hyperplanes in 
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which the convergence to a global optimum was 

guaranteed. Vidal et al. [2] proposed an algebraic method 

for the problem of switched linear system (SLS) 

identification using a new error function, which is called 

product of errors. The identification problem of hybrid 

systems was simplified in a way that the estimation of sub-

model parameters became independent of the discrete state 

estimation. Then, by applying a technique known as 

algebraic method, the parameters of sub-models were 

estimated. Juloski et al. [3] used a probabilistic method for 

linear hybrid system identification. In this probabilistic 

method, at each iteration, using prior probability 

distribution of the parameters and the Bayesian rule, the 

posterior probability distribution of the system parameters 

is calculated.  

A bounded-error approach for PWARX system 

identification is discuused in [4]. Minimality and also 

identifiability of SARX systems are presented in [5]. The 

problem of identifying SARX systems when measurement 

data is impregnated with large amounts of noise is 

discussed in [6]. The problem of identifying SARX models 

based on assigning measurement data to a suitable 

subsystem based on a new robust criterion is presented in 

[7]. Using the Bayesian system identification method, not 

only does it calculate a posterior distribution on the model 

parameters to indicate the level of uncertainty of the 

estimated values, but it also automatically determines the 

desired number of local models [8]. An algebraic geometric 

method (AG) is proposed in [9] to identify ARX systems 

when both process and measurement are noisy. A recursive 

identification method is proposed in [10] for piecewise 

ARX models, which uses a likelihood function that 

adaptively fines the complexity of the model. A novel 

incremental algorithm has been suggested, which is based 

on the genetic and LOLIMOT algorithms for identification 

and fault detection and is of high dimension systems [11].  

In this paper, we propose a new IWLS algorithm for the 

identification problem of switched ARX (SARX) systems 

using the so-called hybrid decoupling constraint method 

and defining the error function as the error product. 

Identification of SARX systems is calculated so that the 

subsystem parameters are estimated independent of the 

switch signal so that the parameters of only one subsystem 

are updated at each iteration while the parameters of the 

other subsystems are assumed to be known.  

The paper is organized as follows. Section II introduces 

different types of linear hybrid systems. Section III explains 

the identification problem of hybrid systems while, in 

Section IV, we reformulate this problem such that the 

identification of continuous state becomes independent of 

the estimation of discrete state. Section V suggests a new 

method based on iterative weighted least squares for the 

identification of hybrid systems. The validity and 

superiority of the proposed method is shown in Section VI 

through numerical examples and simulations. 

 

II. LINEAR HYBRID SYSTEMS 

In this paper, we deal with the problem of 

identifying a particular class of hybrid systems. 

Piecewise affine systems (PWA) are a special class 

of hybrid systems that combine a number of affine 

subsystems in such a way that only one subsystem is 

active at a time. A discrete-time PWA system with s 

subsystems can be represented in the form of state 

space as follow: 

           

                           
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where   nRtx   is the continuous-state trajectory, 

   st ,...,2,1  is a piecewise constant function called 

switching signal, 
nn

i RA


 , 
pn

i RB   , 
1 n

i Rb  are 

the affine section of PWA system, and 
nq

i RC


  is the 

state-space matrices corresponding to the ith subsystem. 

Switching among subsystems occurs when the switching 

signal changes. When the switching signal changes, 

switching occurs between the subsystems. Switching signal 

changes can be determined in different ways. If the 

switching signal is deterministic and independent of 

continuous states, the system is called switched affine (SA). 

While in piecewise affine (PWA) systems, the discrete state 

is determined according to the continuous states and input 

variable as follows: 

 
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where  s

ii 1
  is complete partitioning of state-input 

space. PWA and SA systems can also be shown in 

the input-output form with autoregressive exogenous 

input (ARX) models: 

            cjtubjtyaty
ba n

j
j

n

j
j   

 11

      (3) 

where an  is the system degree, bn is the input, and 

c is affine part in the ARX model. When the 

switching signal is deterministic and independent of 

continuous states, system (3) is called switched 

ARX (SARX) and if the switching signal is 
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determined according to the continuous states and 

input variable, the system is called piecewise ARX 

(PWARX). Eq. (3) can also be presented in the form 

of linear regression: 

     t
T tty                                                                  (4)                                                                                                   

where  t  is the extended regression vector and is 

defined as below: 

          Tba ntutuntytyt 1      1      1               (5) 

and i  is the vector of parameters for the ith subsystem. 

 

III. HYBRID SYSTEM IDENTIFICATION PROBLEM 

  

In the previous sections, different linear hybrid 

systems were introduced. Since SARX systems are 

more common than other linear hybrid systems, we 

focus on identifying SARX systems. The general 

problem of identifying SARX systems can be 

summarized as follows [2], [6]. 

Given the input-output data pairs,      N

ttytu 1, 

estimates: 

1. Subsystem degrees, an  and bn   

2. Number of subsystems s . 

3. Unknown parameters vector,  i for each 

subsystem 1, 2, ,i s . 

4. Discrete state or switching signal  t  for 

 ba nnt ,max . 

 

IV.  ERROR PRODUCT METHOD  

 

As mentioned, in the problem of identifying hybrid 

systems, not only the number of subsystems and the 

degree of the subsystems but also the switching 

signal and subsystem parameters must be estimated. 

As a result, it must be determined that each 

input/output data pair belongs to which subsystem 

and the system parameters are changed to 

approximate the data behavior. Conventional 

methods start using the clustering algorithm in all 

regression vector columns, and a linear model is 

embedded for each data cluster. The identification 

error in SARX systems is as follows: 

       sittyt i
T

i
,...,3,2,1     min                   (6) 

The cost function could be presented as the sum of 

errors as follows: 
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where    is a real positive function. For example, 

   could be a quadratic or absolute value function. 

In order to minimize the cost function (7), the 

parameters of s  hyperplanes should be determined 

such that each data pair is near to, at least, one 

hyperplane. We define the error function for all sub-

models as (8). 

      sittyt i
T

,...,2,1     i                               (8)                                                                                                  

where  ti  shows the prediction error of the tth 

data pair with the ith sub-model. If the output 

prediction errors defined in (8) are multiplied by 

each other, an error function called the error product 

is obtained as (9). 

    

     







s

1i
i

s

1i
ii

       i
T tty

tt








                                          (9)                                                                                                           

where  i  is a norm function related to the ith 

subsystem [2],[6]. According to (9), different norms 

can be defined for the error of each subsystem. 

When describing the identification method, the 

advantage of being able to choose different norms 

will be discussed in Section V. The most important 

result of the error function (9) is that the cost 

function for the problem of identifying SARX 

systems can be defined as follows: 
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t
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According to (10), it can be concluded that the 

identification of SARX systems is equivalent to the 

determination of s hyperplanes where each 

hyperplane represents a subsystem. To minimize the 

cost function (10), the output  ty  should only be 

close to one of the hyperplanes. In this case, the 

distance between  ty  and the hyperplane is zero 

(or a small amount), and multiplying it by other 

distances reduces the error e(t). The most important 

advantage of the cost function (10) rather than (7) is 

that there is no need to cluster the data and 

determine which subsystem is responsible for 
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producing the tth data while by minimizing cost 

function (10), unknown parameters i  can be 

estimated independently of the switching signal. 

 

 

V. PROPOSED METHOD FOR PWARX 

IDENTIFICATION 

In this section, a new method is proposed for identifying 

SARX systems. The advantage of this method over other 

methods is its simplicity in solving and low volume of 

calculations. We rewrite the cost function as follows: 
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(11) 

Minimizing the cost function (10) is an easy 

problem, assuming that only the ith hyperplane is 

unknown. The above cost function with the vector of 

parameters j for ij   is as follows: 
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where  Ni
N ZV ,  is the cost function that specifies 

only unknown parameters when other parameters are 

known, and  tWi  determines the weight of the tth 

data and is defined as: 
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What is interesting about cost function (12) is that if 

all weight values  tWi  are equal, the identification 

problem will be a prediction error method (PEM) in 

which case  tWi  weights will not be equal and the 

problem is converted to weighted PEM (WPEM). In 

fact, while only one sub-model is unknown and the 

other is known, the product of the errors is small and 

the corresponding weights are small for those data 

determined by known sub-models, so it has little 

effect on unknown parameters estimation. On the 

other hand, data not generated by known sub-models 

have the greatest impact on the optimization 

problem because the corresponding weights have 

significant values. The advantage of being able to 

choose different norms  i  is that by choosing 2-

norm, the problem becomes the problem of weighted 

least squares (WLS), so it can be easily solved by 

conventional analytical methods. The analytical 

solution of the cost function (12) is obtained as:  
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In this condition, other norms  j  for ij   can have 

different choices depending on the type of problem. The 

suitable choice of norms  j  for ij   can affect the 

rate of algorithm convergence and stability of system [6]. 

 

VI. SUGGESTED ALGORITHM 

By choosing an appropriate norm  i  for ij   

and acceptable value for prediction error   and by 

assuming that the number of subsystems and their 

degrees are known, the following algorithm is 

proposed for SARX system identification. The 

degrees of all subsystems are assumed equal. 

 

1- Let  

   Nt :1 and si :1 ,   1ti and  0k   

2- Let  

 1 kk  and i  is the reminder of k  divided by s  

3- Update  tWi  using Eq. (13). 

 4- Update i  according to Eq. (14-16). 

 5- Update error vector  ti  by Eq. (8). 

 6- Repeat steps 2-5 until condition (17) is met: 
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 01.0 , After determining the sub-model 

parameters, the switching signal is calculated by 

solving the following equation. 

       sittyt i
T

i

,...,2,1     minarg              (18)                                                                                  
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VII. NUMERICAL EXAMPLES AND SIMULATIONS 

 

Two different systems have been used to evaluate the 

accuracy and efficiency of the proposed method. 

 

A. Example 1 

Assume that the input-output data pair      71

1, ttytx  is 

generated by the system [4,8]. 
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                    (19)                                                                                 

in which 30 points on the interval  2,5   and 41 

points on the interval  2,2  with uniform 

distribution are generated. The outputs are computed 

using model (19) and 1  and 2  indicate noise with 

the zero mean and uniform distribution on intervals 

 8.0,8.0  and z, respectively. The generated data 

from system (19) is illustrated in Fig. 1. 

 
Fig. 1. Input/output data. 

 

The sub-models obtained in the first iteration after 

applying the proposed algorithm to the data are 

shown in Fig. 2, which uses the Euclidean norm as 

the selected norm. 

 
Fig. 2. The models obtained after the first iteration 

 

Because of the weighting, the values are initially 

equal to one, the first sub-model tries to model all 

the data as shown in Fig. 2. After the first model is 

determined, the parameters of the second model are 

determined. Since the weight values have changed, 

the data that are far from the first model have a 

higher weight and more importance. Figs. 3 and 4 

show how these sub-models have changed in the 

second and third iterations of the algorithm, and 

only after three iterations, the values of the 

parameters tend to their actual values. The model 

can predict the output as shown in Fig. 4. The values 

estimated for the switching signal are shown in Fig. 

5. 

 

 
Fig. 3. Subsystem models after the second iteration. 
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Fig. 4. Subsystem models after the third iteration. 

 

 
Fig. 5. The values estimated for the discrete signal. 

 

B. Example 2 

To compare the method proposed in this paper with 

other methods in identifying the hybrid system, the 

simulation results are compared with the method 

presented in [2]. The reason for choosing a reference 

[2] for comparison is that the method used in this 

reference is based on the product of errors and 

polynomial factors. Proposing a simple iterative 

least-squares weight algorithm to estimate the 

parameter of SARX systems is a novelty of our 

method in this paper compared to the reference 

method [2]. In addition, the cost function used in [2] 

is the same as Eq. (10) with the choice of 1-norm (

   i ) as the selective norm, while in the 

method proposed in this paper, the selective norm 

can be adjusted according to different conditions. 

Proper selection of the selected norm leads to a 

robust algorithm against outliers. Each linear system 

is defined as follows: 
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where    3,2,1t  is the switching signal and is 

determined after 1000 iterations as below: 
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Parameters were randomly selected and simulations 

were performed on 1000 SARX systems. The 

parameters 1a  and 2a  are selected in each 

experiment for each of the three sub-models such 

that the complex digital poles are evenly distributed 

on the wall 1.80  z . Fig. 6 shows the location 

of complex poles in the ring. 

 
Fig. 6. The location of the system poles. 

 

Parameter 1c  is also determined randomly in each 

trial and for each of the three linear sub-models with 

zero mean, unit variance, Gaussian distribution. The 

initial values of the continuous states are randomly 

chosen with zero mean Gaussian distribution and 

variance 2I  for each trial. The measurement 

noise  te  is a white noise with zero mean and 

variance e . To investigate the effect of noise on 

the identification method, the problem is repeated 

five times with different values of e . The results of 

the comparison between the method presented in 

this paper (IWLS) with the method presented in [2], 

which is a polynomial factorization algorithm (PFA) 

and a polynomial differentiation algorithm (PDA), 

are shown in Fig. 7-9. At each trial, and for each sub 

system, the error between real parameters of the 

system  121 ,, caa  and estimated parameters 

 121
ˆ,ˆ,ˆ caa  is determined as 

   
2121121

ˆ,ˆ,ˆ,, caacaa  , and the mean error is 
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obtained with averaging on 1000 trials and 3 sub-

systems. Fig. 7 illustrates the mean error of sub 

model parameters. In each experiment and for each 

subsystem, the error between the actual system 

parameters  121 ,, caa  and the estimated 

parameters  121
ˆ,ˆ,ˆ caa  is determined as 

   
2121121

ˆ,ˆ,ˆ,, caacaa   and the mean of the 

error is obtained by averaging over 1000 

experiments and three subsystems. Fig. 7 shows the 

mean error of the submodel parameters. 
 

 
Fig. 7. The mean error of the estimated parameters. 

 

Fig. 8 demonstrates the mean error of output 

prediction. At each trial, the output prediction error 

is determined as     


100

1

ˆ
t

tyty , and the mean error 

is obtained by averaging on 1000 trials.  

 
Fig. 8. The mean error for the output prediction. 

 

The mean error of switching signal estimation is 

shown in Fig. 9. The mean error of switching signal 

estimation is calculated by dividing the number of 

cases in which the switching signal is incorrectly 

estimated in all cases. As shown in Fig. 7, the 

method proposed in this paper shows a little more 

error in estimating the subsystem parameters but has 

less error in output prediction compared to PDA and 

more than PFA as shown in Fig. 8. Finally as shown 

in Fig. 9, the error of the proposed method in 

estimating the switching signal is much less than 

PDA and PFA methods.  

 
Fig. 9. The mean error of the estimation of switching signal. 

 

CONCLUSION 

This paper presented a new method for identifying 

SARX systems. Using a method called the product 

of errors, the cost function for identifying SARX 

systems is defined in such a way that the continuous 

state estimation is independent of the discrete state 

estimation. An iterative least squares weight method 

is also proposed to estimate the sub-model 

parameters, in which only one sub-model is 

unknown and the other models are assumed known 

in each iteration, so the cost function can be easily 

solved analytically. To show the effectiveness and 

superiority of the proposed method in identifying 

SARX systems, simulations and numerical examples 

were given. 
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