تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,159 |
تعداد مشاهده مقاله | 9,107,430 |
تعداد دریافت فایل اصل مقاله | 5,939,272 |
A Novel Meta-heuristic Framework for Solving Power Theft Detection Problem: Cheetah Optimization Algorithm | ||
International Journal of Industrial Electronics Control and Optimization | ||
دوره 5، شماره 1، خرداد 2022، صفحه 63-76 اصل مقاله (1.44 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2022.39528.1370 | ||
نویسندگان | ||
Hassan Ghaedi1؛ Seyed Reza Kamel Tabbakh Farizani ![]() | ||
1Department of Computer, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran | ||
2Department of Computer, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
3Islamic Azad University, Quchan Branch | ||
چکیده | ||
In this paper, a two-level stacking technique with feature selection is used to detect power theft. The first level of this technique uses base classifiers such as support vector machine (SVM), naïve Bayes (NB), and AdaBoost selected by evaluating the F-score and diversity criteria. The appropriate features of the base classifiers are selected using a new feature selection algorithm based on the cheetah optimization algorithm (CHOA). This algorithm ensures diversification and intensification in each step of running by adjusting the Attention parameter of the cheetahs. In the second level, a single-layer perceptron (SLP) model is used to obtain the weight of the base classifiers and combine their predictions. The proposed framework is evaluated on the Irish Social Science Data Archive (ISSDA) dataset, and MATLAB R2020b is used for simulation and evaluation. The results of the accuracy, recall, precision, and F-score, specificity, and receiver operating characteristic (ROC) criteria indicated the high efficiency of the proposed framework in detecting power theft. | ||
کلیدواژهها | ||
Power theft detection؛ Cheetah optimization algorithm؛ Machine learning؛ Classification؛ Feature selection | ||
مراجع | ||
[1] L. A. Passos Júnior et al., “Unsupervised non-technical losses identification through optimum-path forest,” Electric Power Systems Research, vol. 140, pp. 413– 423, 2016, doi: 10.1016/j.epsr.2016.05.036. [2] P. Jokar, N. Arianpoo, and V. C. M. Leung, “Electricity theft detection in AMI using customers’ consumption patterns,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 216–226, 2016, doi: 10.1109/TSG.2015.2425222. [3] T. Ahmad, H. Chen, J. Wang, and Y. Guo, “Review of various modeling techniques for the detection of electricity theft in smart grid environment,” Renewable and Sustainable Energy Reviews, vol. 82, no. November 2016, pp. 2916–2933, 2018, doi: 10.1016/j.rser.2017.10.040. [4] C. Cortes and V. Vapnik, “Support-vector networks,” Chem. Biol. Drug Des., vol. 297, pp. 273–297, Jan. 2009, doi: 10.1007/%2FBF00994018. [5] D. D. Lewis, “Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval,” 1998. [6] K. Zheng, Y. Wang, Q. Chen, and Y. Li, “Electricity theft detecting based on density-clustering method,” 2017 IEEE Innovative Smart Grid Technologies - Asia: Smart Grid for Smart Community, ISGT-Asia 2017, pp. 1–6, 2018, doi: 10.1109/ISGT-Asia.2017.8378347. [7] F. Xiao and Q. Ai, “Electricity theft detection in smart grid using random matrix theory,” IET Generation, Transmission and Distribution, vol. 12, no. 2, pp. 371– 378, 2018, doi: 10.1049/iet-gtd.2017.0898. [8] Z. Zheng, Y. Yang, X. Niu, H. N. Dai, and Y. Zhou, “Wide and Deep Convolutional Neural Networks for Electricity-Theft Detection to Secure Smart Grids,” IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1606–1615, 2018, doi: 10.1109/TII.2017.2785963. [9] A. A. Ghasemi and M. Gitizadeh, “Detection of illegal consumers using pattern classification approach combined with Levenberg-Marquardt method in smart grid,” International Journal of Electrical Power and Energy Systems, vol. 99, no. December 2017, pp. 363– 375, 2018, doi: 10.1016/j.ijepes.2018.01.036. [10] J. I. Guerrero, I. Monedero, F. Biscarri, J. Biscarri, R. Millan, and C. Leon, “Non-Technical Losses Reduction by Improving the Inspections Accuracy in a Power Utility,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1209–1218, 2018, doi: 10.1109/TPWRS.2017.2721435. [11] G. M. Messinis and N. D. Hatziargyriou, “Review of non-technical loss detection methods,” Electric Power Systems Research, vol. 158, pp. 250–266, 2018, doi: 10.1016/j.epsr.2018.01.005. [12] A. Maamar and K. Benahmed, “Machine learning techniques for energy theft detection in AMI,” ACM International Conference Proceeding Series, pp. 57–62, 2018, doi: 10.1145/3178461.3178484. [13] S. K. Singh, R. Bose, and A. Joshi, “Energy theft detection in advanced metering infrastructure,” IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings, vol. 2018-Janua, pp. 529–534, 2018, doi: 10.1109/WF-IoT.2018.8355148. [14] M. Nazmul Hasan, R. N. Toma, A. Al Nahid, M. M. Manjurul Islam, and J. M. Kim, “Electricity theft detection in smart grid systems: A CNN-LSTM based approach,” Energies, vol. 12, no. 17, pp. 1–18, 2019, doi: 10.3390/en12173310. [15] S. Li, Y. Han, X. Yao, S. Yingchen, J. Wang, and Q. Zhao, “Electricity Theft Detection in Power Grids with Deep Learning and Random Forests,” Journal of Electrical and Computer Engineering, vol. 2019, 2019, doi: 10.1155/2019/4136874. [16] B. Konstantinos and S. Georgios, “Efficient Power Theft Detection for Residential Consumers Using Mean Shift Data Mining Knowledge Discovery Process,” International Journal of Artificial Intelligence & Applications, vol. 10, no. 01, pp. 69–85, 2019, doi: 10.5121/ijaia.2019.10106. [17] A. Maamar and K. Benahmed, “A Hybrid Model for Anomalies Detection in AMI System Combining K-means Clustering and Deep Neural Network,” Computers, Materials and Continua, vol. 60, no. 1, pp. 15–39, 2019, doi: 10.32604/cmc.2019.06497. [18] P. Chandel and T. Thakur, “A novel rule based technique to detect electricity theft in India,” Advances in Science, Technology and Engineering Systems, vol. 4, no. 2, pp. 413–421, 2019, doi: 10.25046/aj040251. [19] R. Razavi, A. Gharipour, M. Fleury, and I. J. Akpan, “A practical feature-engineering framework for electricity theft detection in smart grids,” Applied Energy, vol. 238, no. December 2018, pp. 481–494, 2019, doi: 10.1016/j.apenergy.2019.01.076. [20] Z. Feng, J. Huang, W. H. Tang, and M. Shahidehpour, “Data mining for abnormal power consumption pattern detection based on local matrix reconstruction,” International Journal of Electrical Power and Energy Systems, vol. 123, no. February, p. 106315, 2020, doi: 10.1016/j.ijepes.2020.106315. [21] W. Zhang, X. Dong, H. Li, J. Xu, and D. Wang, “Unsupervised Detection of Abnormal Electricity Consumption Behavior Based on Feature Engineering,” IEEE Access, vol. 8, pp. 55483–55500, 2020, doi: 10.1109/ACCESS.2020.2980079. [22] H. Ghaedi, S. R. Kamel Tabbakh Farizaniv, and R. Ghaemi, “Improving power theft detection using efficient clustering and ensemble classification,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 5, pp. 3704–3717, 2021, doi: 10.11591/ijece.v11i5.pp3704-3717. [23] H. Liu and H. Motoda, Feature Extraction, Construction and Selection: A Data Mining Perspective. USA: Kluwer Academic Publishers, 1998. [24] H. Liu and L. Yu, “Toward integrating feature selection algorithms for classification and clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 4, pp. 491–502, 2005, doi: 10.1109/TKDE.2005.66. [25] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2, pp. 241–259, 1992, doi: https://doi.org/10.1016/S0893-6080(05)80023-1. [26] “Irish Social Science Data Archive,” 2012. https://www.ucd.ie/issda/data/commissionforenergyregu lationcer/. [27] J. W. Wilson et al., “Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey,” Biology letters, vol. 9, no. 5, p. 20130620, Sep. 2013, doi: 10.1098/rsbl.2013.0620. [28] L. K. Van der Weyde, T. Y. Hubel, J. Horgan, J. Shotton, R. McKenna, and A. M. Wilson, “Movement patterns of cheetahs (Acinonyx jubatus) in farmlands in Botswana,” Biology Open, vol. 6, no. 1, pp. 118–124, Dec. 2016, doi: 10.1242/bio.021055. [29] M. S. Farhadinia et al., “Feeding ecology of the Asiatic cheetah Acinonyx jubatus venaticus in low prey habitats in northeastern Iran: Implications for effective conservation,” Journal of Arid Environments, vol. 87, pp. 206–211, 2012, doi: https://doi.org/10.1016/j.jaridenv.2012.05.002. [30] P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W. Mohamed, “Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019),” IEEE Access, vol. 9, pp. 26766–26791, 2021, doi: 10.1109/ACCESS.2021.3056407. [31] A. Pandey, D. Rajpoot, and M. Saraswat, “Feature selection method based on hybrid data transformation and binary binomial cuckoo search,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, Feb. 2020, doi: 10.1007/s12652-019-01330-1. [32] S. Sarvari, N. F. M. Sani, Z. M. Hanapi, and M. T. Abdullah, “An Efficient Anomaly Intrusion Detection Method With Feature Selection and Evolutionary Neural Network,” IEEE Access, vol. 8, pp. 70651– 70663, 2020, doi: 10.1109/ACCESS.2020.2986217. [33] R. Shetty, S. Alangar, and P. Pai, “An efficient online sequential extreme learning machine model based on feature selection and parameter optimization using cuckoo search algorithm for multi-step wind speed forecasting,” Soft Computing, vol. 25, Jan. 2021, doi: 10.1007/s00500-020-05222-x. [34] S. Marso and M. El Merouani, “Predicting financial distress using hybrid feedforward neural network with cuckoo search algorithm,” 2020. [35] A. Naik, V. Kuppili, and D. Edla, “Efficient feature selection using one-pass generalized classifier neural network and binary bat algorithm with a novel fitness function,” Soft Computing, vol. 24, Mar. 2020, doi: 10.1007/s00500-019-04218-6. [36] T. Niu, J. Wang, K. Zhang, and P. Du, “Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy,” Renewable Energy, vol. 118, pp. 213–229, 2018, doi: https://doi.org/10.1016/j.renene.2017.10.075. [37] S. Jeyasingh and M. Veluchamy, “Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset,” Asian Pacific journal of cancer prevention : APJCP, vol. 18, pp. 1257–1264, May 2017, doi: 10.22034/APJCP.2017.18.5.1257. [38] S. Fei, “Fault diagnosis of bearing based on relevance vector machine classifier with improved binary bat algorithm for feature selection and parameter optimization,” Advances in Mechanical Engineering, vol. 9, p. 168781401668529, Jan. 2017, doi: 10.1177/1687814016685294. [39] H. Xu, S. yu, J. Chen, and X. Zuo, “An Improved Firefly Algorithm for Feature Selection in Classification,” Wireless Personal Communications, vol. 102, pp. 1–12, Oct. 2018, doi: 10.1007/s11277-018-5309-1. [40] S. B and M. K, “Firefly algorithm based Feature Selection for Network Intrusion Detection,” Computers & Security, vol. 81, Nov. 2018, doi: 10.1016/j.cose.2018.11.005. [41] S. Dash, R. Thulasiram, and P. Thulasiraman, “Modified Firefly Algorithm With Chaos Theory for Feature Selection: A Predictive Model for Medical Data,” International Journal of Swarm Intelligence Research, vol. 10, pp. 1–20, Apr. 2019, doi: 10.4018/IJSIR.2019040101. [42] C. Yan, J. Ma, H. Luo, G. Zhang, and J. Luo, “A Novel Feature Selection Method for High-Dimensional Biomedical Data Based on an Improved Binary Clonal Flower Pollination Algorithm,” Human Heredity, vol. 84, pp. 1–13, Sep. 2019, doi: 10.1159/000501652. [43] G. Zhang, J. Hou, J. Wang, C. Yan, and J. Luo, “Feature Selection for Microarray Data Classification Using Hybrid Information Gain and a Modified Binary Krill Herd Algorithm,” Interdisciplinary Sciences: Computational Life Sciences, vol. 12, May 2020, doi: 10.1007/s12539-020-00372-w. [44] Y. Pathak, K. V Arya, and S. Tiwari, “Feature selection for image steganalysis using levy flight-based grey wolf optimization,” Multimedia Tools and Applications, vol. 78, no. 2, pp. 1473–1494, 2019, doi: 10.1007/s11042-018-6155-6. [45] Q. Al-Tashi, H. Rais, and S. Jadid Abdulkadir, Feature Selection Method Based on Grey Wolf Optimization for Coronary Artery Disease Classification. 2018. [46] J. Han, M. Kamber, and J. Pei, “3 - Data Preprocessing,” in The Morgan Kaufmann Series in Data Management Systems, J. Han, M. Kamber, and J. B. T.-D. M. (Third E. Pei, Eds. Boston: Morgan Kaufmann, 2012, pp. 83– 124. [47] L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy,” Machine Learning, vol. 51, no. 2, pp. 181–207, 2003, doi: 10.1023/A:1022859003006. [48] D. B. Skalak, “The Sources of Increased Accuracy for Two Proposed Boosting Algorithms,” 1996. [49] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia medica, vol. 22, no. 3, pp. 276– 282, 2012, [Online]. Available: http://europepmc.org/abstract/MED/23092060. [50] Y. Freund, “Boosting a Weak Learning Algorithm by Majority,” Information and Computation, vol. 121, no. 2, pp. 256–285, 1995, doi: https://doi.org/10.1006/inco.1995.1136. [51] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm,” Computers and Structures, vol. 169, pp. 1–12, 2016, doi: 10.1016/j.compstruc.2016.03.001. | ||
آمار تعداد مشاهده مقاله: 319 تعداد دریافت فایل اصل مقاله: 260 |