تعداد نشریات | 29 |
تعداد شمارهها | 630 |
تعداد مقالات | 6,368 |
تعداد مشاهده مقاله | 9,731,181 |
تعداد دریافت فایل اصل مقاله | 6,362,704 |
Adaptive fuzzy fractional-order fast terminal sliding mode control for a class of uncertain nonlinear systems | ||
International Journal of Industrial Electronics Control and Optimization | ||
دوره 5، شماره 1، خرداد 2022، صفحه 77-87 اصل مقاله (1.25 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2022.38930.1364 | ||
نویسندگان | ||
Amir Razzaghian1؛ Reihaneh Kardehi Moghaddam* 1؛ Naser Pariz2 | ||
1Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
2Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran | ||
چکیده | ||
The paper introduces a novel adaptive fuzzy fractional-order (FO) fast terminal sliding mode control procedure for a class of nonlinear systems in the presence of uncertainties and external disturbances. For this purpose, firstly, using fractional calculus, a new FO nonlinear sliding surface is proposed and then, the corresponding FO fast terminal sliding mode controller (FOFTSMC) is designed to satisfy the sliding condition in finite time. Next, to eliminate the chattering phenomenon, a fuzzy system is constructed to design a continuous switching control law. The finite-time stability of the proposed adaptive fuzzy FOFTSMC (AFFOFTSMC) is proved using the concept of Lyapunov stability theorem. Finally, to illustrate the effectiveness of the proposed AFFOFTSMC, three examples are given as case studies. The numerical simulation results confirm the superiority of the proposed controller, which are the better robust performance, faster convergence, finite-time stability of the closed-loop control system, and a chattering free control effort compared to other mentioned control methods. | ||
کلیدواژهها | ||
Nonlinear systems؛ Fractional calculus؛ Terminal sliding mode control؛ Fuzzy systems؛ Adaptive control | ||
مراجع | ||
[1] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Chen, “A new collection of real world applications of fractional calculus in science and engineering,” Communications in Nonlinear Science and Numerical Simulation, Vol. 64, pp. 213-231, Nov. 2018. [2] X. J. Yang, General fractional derivatives: theory, methods and applications, New York: CRC Press, 2019. [3] O. Naifar, and A. Ben Makhlouf, Fractional Order Systems—Control Theory and Applications, Springer, Chap. 3, pp. 29-47, 2022. [4] Y. Wang, G. Gao, X. Li, and Z. Chen, “A fractionalorder model-based state estimation approach for lithium-ion battery and ultra-capacitor hybrid power source system considering load trajectory,” Journal of Power Sources, Vol. 449, pp. 227543, Feb. 2020. [5] A. Yousefpour, H. Jahanshahi, J. M. Munoz-Pacheco, S. Bekiros, and Z. Wei “A fractional-order hyper-chaotic economic system with transient chaos,” Chaos, Solitons & Fractals, Vol. 130, pp. 109400, Jan. 2020. [6] M. S. Tavazoei “Fractional order chaotic systems: history, achievements, applications, and future challenges,” The European Physical Journal Special Topics, Vol. 229, No. 6, pp. 887-904, Mar. 2020. [7] K. Rajagopal, N. Hasanzadeh, F. Parastesh, I. I. Hamarash, S. Jafari, and I. Hussain. “A fractional-order model for the novel coronavirus (COVID-19) outbreak,” Nonlinear Dynamics, Vol. 101, No. 1, pp. 711-718, Jul. 2020. [8] A. Boudaoui, Y. El hadj Moussa, Z. Hammouch, and S. Ullah, “A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel,” Chaos, Solitons & Fractals, Vol. 146, pp. 110859, May 2021. [9] S. Zhang, L. Liu, and X Cui, “Robust FOPID controller design for fractional‐order delay systems using positive stability region analysis,” International Journal of Robust and Nonlinear Control, Vol.29, No. 15, pp. 5195-5212, Oct. 2019. [10] M. H. Heydari, and Z. Avazzadeh, “A computational method for solving two‐dimensional nonlinear variable‐ order fractional optimal control problems,” Asian Journal of Control, Vol. 22, No. 3, pp. 1112-1126, May 2020. [11] Q. Zhu, M. Xu, W. Liu, and M. Zheng, “A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter,” Energy, Vol. 187, pp. 115880, Nov. 2019. [12] C. Hua, J. Chen, and X. Guan, “Fractional-order sliding mode control of uncertain QUAVs with time-varying state constraints,” Nonlinear Dynamics, Vol. 95, No. 2, pp. 1347-1360, Jan. 2019. [13] X. Yang, C. Li, T. Huang, and Q. Song, “Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses,” Applied Mathematics and Computation, Vol. 293, pp. 416-422, Jan. 2017. [14] V. N. Phat, and N. T. Thanh, “New criteria for finitetime stability of nonlinear fractional-order delay systems: A Gronwall inequality approach,” Applied Mathematics Letters, Vol. 83, pp. 169-175, Sep. 2018. [15] L. Liu, S. Zhang, D. Xue, and Y. Chen, “Robust stability analysis for fractional‐order systems with time delay based on finite spectrum assignment,” International Journal of Robust and Nonlinear Control, Vol. 29, No. 8, pp. 2283-2295, May 2019. [16] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding mode control and observation, New York: Springer, 2014. [17] S. Kamal, J. A. Moreno, A. Chalanga, B. Bandyopadhyay, and L. M. Fridman, “Continuous terminal sliding-mode controller,” Automatica, Vol. 69, pp. 308-314, Jul. 2016. [18] H. Wang, L. Shi, Z. Man, J. Zheng, S. Li, M. Yu, C. Jiang, H. Kong, and Z. Cao, “Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer,” IEEE Trans. Ind. Electron., Vol. 65, No. 9, pp. 7160-7172, Sep. 2018. [19] Y. Feng, F. Han, and X. Yu, “Chattering free full-order sliding-mode control,” Automatica, Vol. 50, No. 4, pp. 1310-1314, Apr. 2014. [20] B. Sahoo, S. K. Routray, and P. K. Rout, “Execution of robust dynamic sliding mode control for smart photovoltaic application,” Sustainable Energy Technologies and Assessments, Vol. 45, pp. 101150, Jun. 2021. [21] I. Sami, S. Ullah, N. Ullah, and J. S. Ro, “Sensorless fractional order composite sliding mode control design for wind generation system,” ISA transactions, Vol. 111, pp. 275-289, May 2021. [22] P. S. Londhe, and B. M. Patre, “Adaptive fuzzy sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle,” Intelligent Service Robotics, Vol. 12, No. 1, pp. 87-102, Jan. 2019. [23] M. Bekrani, M. Heydari, and S. T. Behrooz, “An Adaptive Control Method Based on Interval Fuzzy Sliding Mode for Direct Matrix Converters,” International Journal of Industrial Electronics Control and Optimization, Vol. 3, No. 2, pp. 159-172, Apr. 2020. [24] E. Liu, Y. Yang, and Y. Yan, “Spacecraft attitude tracking for space debris removal using adaptive fuzzy sliding mode control,” Aerospace Science and Technology, Vol. 107, pp. 106310, Dec. 2020. [25] A. Razzaghian, and R. K. Moghaddam, “Robust Adaptive Neural Network Control of Miniature Unmanned Helicopter,” 26th Iranian Conference on Electrical Engineering (ICEE 2018): IEEE, pp. 801- 805, 2018. [26] C. Liu, G. Wen, Z. Zhao, and R. Sedaghati, “Neuralnetwork-based sliding-mode control of an uncertain robot using dynamic model approximated switching gain,” IEEE Trans. Cyberne., Vol. 51, No. 5, pp. 2339- 2346, May 2021. [27] A. Razzaghian, “Robust Nonlinear Control Based on Disturbance Observer for a Small-Scale Unmanned Helicopter,” Journal of Nonlinear Analysis and Application, Vol. 2017, No. 2, pp. 122-131, Sep. 2017. [28] O. Mofid, M. Momeni, S. Mobayen, and A. Fekih, “A disturbance-observer-based sliding mode control for the robust synchronization of uncertain delayed chaotic systems: application to data security,” IEEE Access, Vol. 9, pp. 16546-16555, Jan .2021. [29] X .Yin, L. Pan, and S. Cai, “Robust adaptive fuzzy sliding mode trajectory tracking control for serial robotic manipulators,” Robotics and ComputerIntegrated Manufacturing, Vol. 72, pp. 101884, Dec. 2021. [30] X. Su, Y. Xu, and X. Yang, “Neural network adaptive sliding mode control without overestimation for a maglev system,” Mechanical Systems and Signal Processing, Vol. 168, pp. 108661, Apr. 2022. [31] Y. Wang, G. Luo, L. Gu, and X. Li, “Fractional-order nonsingular terminal sliding mode control of hydraulic manipulators using time delay estimation,” Journal of Vibration and Control, Vol. 22, No. 19, pp. 3998-4011, Nov. 2016. [32] G. Sun, and Z. Ma, “Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control,” IEEE/ASME Trans. Mechatro., Vol. 22 No. 6, pp. 2643-2653, Dec. 2017. [33] Y. Wang, S. Jiang, B. Chen, and H. Wu, “A new continuous fractional-order nonsingular terminal sliding mode control for cable-driven manipulators,” Advances in Engineering software, Vol. 119, pp. 21-29, May 2018. [34] X. Zhou, W. Wang, Z. Liu, C. Liang, and C. Lai, “Impact angle constrained three-dimensional integrated guidance and control based on fractional integral terminal sliding mode control,” IEEE Access, Vol. 7, pp. 126857-126870, Sep. 2019. [35] S. Song, B. Zhang, X. Song, Y. Zhang, Z. Zhang, and W. Li, “Fractional-order adaptive neuro-fuzzy sliding mode H∞ control for fuzzy singularly perturbed systems,” Journal of the Franklin Institute, Vol. 356, No. 10, pp. 5027-5048, Jul. 2019. [36] A. Razzaghian, R. Kardehi Moghaddam, and N. Pariz, “Adaptive neural network conformable fractional-order nonsingular terminal sliding mode control for a class of second-order nonlinear systems,” IETE Journal of Research, to be published, doi: 10.1080/03772063.2020.1791743. [37] J. Fei, Z. Wang, X. Liang, Z. Feng, and Y. Xue, “Fractional sliding mode control for micro gyroscope based on multilayer recurrent fuzzy neural network,” IEEE Trans. Fuzz. Syst., to be published, doi: 10.1109/TFUZZ.2021.3064704. [38] X. Wu, and Y. Huang, “Adaptive fractional-order nonsingular terminal sliding mode control based on fuzzy wavelet neural networks for omnidirectional mobile robot manipulator,” ISA transactions, to be published, doi: 10.1016/j.isatra.2021.03.035. [39] A. Razzaghian, “A fuzzy neural network-based fractional-order Lyapunov-based robust control strategy for exoskeleton robots: Application in upper-limb rehabilitation,” Mathematics and Computers in Simulation, Vol. 193, pp. 567-583, Mar. 2022. [40] S. Han, “Fractional-Order Command Filtered Backstepping Sliding Mode Control with FractionalOrder Nonlinear Disturbance Observer for Nonlinear Systems,” Journal of the Franklin Institute, Vol. 357, No. 11, pp. 6760-6776, Jul. 2020. [41] Z. Wang, X. H. Wang, J. W. Xia, H. Shen, and B. Meng, “Adaptive sliding mode output tracking control basedFODOB for a class of uncertain fractional-order nonlinear time-delayed systems,” Science China Technological Sciences, Vol. 63, No. 9, pp. 1854-1862, Sep. 2020. [42] A. Razzaghian, R. Kardehi Moghaddam, and N. Pariz, “Fractional-order nonsingular terminal sliding mode control via a disturbance observer for a class of nonlinear systems with mismatched disturbances,” Journal of Vibration and Control, Vol. 27, No. 1-2, pp. 140-151, Jan. 2021. [43] A. Razzaghian, R. Kardehi Moghaddam, and N. Pariz, “Disturbance observer-based fractional-order nonlinear sliding mode control for a class of fractional-order systems with matched and mismatched disturbances,” International Journal of Dynamics and Control, Vol. 9, No. 2, pp. 671-678, Jun. 2021. [44] I. Podlubny, Fractional differential equations, New York, NY: Academic Press, 1999. [45] K. Diethelm, The analysis of fractional differential equations, Berlin: Springer, 2010. [46] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos, “Lyapunov functions for fractional order systems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 19, No. 9, pp. 2951-2957, Sep. 2014. [47] Y. Li, Y. Chen, and I. Podlubny, “Mittag–Leffler stability of fractional order nonlinear dynamic systems,” Automatica, Vol. 45, No. 8, pp. 1965-1969, Aug. 2009. [48] F. Sheikholeslam, and M. Zekri, “Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems,” ISA transactions, Vol. 52, No. 3, pp. 342-350, May 2013. [49] Y. J. Huang, T. C. Kuo, S. H. Chang, “Adaptive slidingmode control for nonlinearsystems with uncertain parameters,” IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics), Vol. 38, No. 2, pp. 534-539, Mar. 2008. [50] S. Dadras, H. R. Momeni, “Adaptive sliding mode control of chaotic dynamical systems with application to synchronization,” Mathematics and Computers in Simulation, Vol. 80, No. 12, pp. 2245-2257, Aug. 2010. | ||
آمار تعداد مشاهده مقاله: 429 تعداد دریافت فایل اصل مقاله: 231 |