
تعداد نشریات | 32 |
تعداد شمارهها | 739 |
تعداد مقالات | 7,166 |
تعداد مشاهده مقاله | 11,710,127 |
تعداد دریافت فایل اصل مقاله | 8,035,964 |
Design of Low Power Full-Adder Circuit using Quantum-dot Cellular Automata | ||
International Journal of Industrial Electronics Control and Optimization | ||
دوره 5، شماره 1، خرداد 2022، صفحه 99-108 اصل مقاله (1.2 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2022.40569.1395 | ||
نویسندگان | ||
Faezeh Motalebi1؛ Samira Sayedsalehi* 2 | ||
1Department of Computer and IT Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran | ||
2Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
چکیده | ||
Quantum-dot Cellular Automata (QCA) is a new technology for eliminating some of the problems of existing technologies such as CMOS. Some of the key advantages of QCA are an intersection of wires in the same plane, high speed, small area, power consumption, complexity and low cost. Employing a three-input majority gate, a five-input majority gate and three logic gates, this study presents a full-adder circuit in a single layer which for higher efficiency and avoiding much complexity and based on the function of the intended full-adder circuit, the five-input gate is proposed. The proposed full-adder circuit and the proposed ripple adder circuit are compared with previous designs regarding complexity, number of cells, and area and the results are reported. Moreover, proposed circuits’ power consumption has been calculated by using QCApro. These results indicate that the proposed full adder design in comparison with previous similar design achieved 36%, 20% and 4.4% reduction in the number of cells, latency and power consumption, respectively. | ||
کلیدواژهها | ||
Computational circuits؛ Full adder؛ Majority gate؛ Quantum cellular automata | ||
مراجع | ||
[1] R. Compano, L. Molenkamp and D. Paul, "Roadmap for nanoelectronics," European Commission IST Programme, Future and Emerging Technologies, 2000. [2] C. Lent, P. Tougaw, W. Porod and G. Bernstein, "Quantum cellular automata", Nanotechnology, vol. 4, no. 1, pp. 49- 57, 1993. Available: 10.1088/0957-4484/4/1/004. [3] S. Sarmadi, S. Sayedsalehi, M. Fartash and S. Angizi, "A Structured Ultra-Dense QCA One-Bit Full-Adder Cell", Quantum Matter, vol. 5, no. 1, pp. 118-123, 2016. Available: 10.1166/qm.2016.1263. [4] S. Angizi, E. Alkaldy, N. Bagherzadeh and K. Navi, "Novel Robust Single Layer Wire Crossing Approach for Exclusive OR Sum of Products Logic Design with Quantum-Dot Cellular Automata", Journal of Low Power Electronics, vol. 10, no. 2, pp. 259-271, 2014. Available: 10.1166/jolpe.2014.1320. [5] K. Navi, R. Farazkish, S. Sayedsalehi and M. Rahimi Azghadi, "A new quantum-dot cellular automata full-adder", Microelectronics Journal, vol. 41, no. 12, pp. 820-826, 2010. Available: 10.1016/j.mejo.2010.07.003. [6] K. Navi, S. Sayedsalehi, R. Farazkish and M. Azghadi, "Five-Input Majority Gate, a New Device for Quantum-Dot Cellular Automata", Journal of Computational and Theoretical Nanoscience, vol. 7, no. 8, pp. 1546-1553, 2010. Available: 10.1166/jctn.2010.1517. [7] S. Hashemi, M. Tehrani, K. Navi, and Essays, “An efficient quantum-dot cellular automata full-adder,” Scientific Research and Essays, vol. 7, no. 2, pp. 177-189, 2012. [8] S. Hashemi and K. Navi, "A Novel Robust QCA Fulladder", Procedia Materials Science, vol. 11, pp. 376-380, 2015. Available: 10.1016/j.mspro.2015.11.133 [Accessed 13 February 2022]. [9] S. Sayedsalehi, M. Moaiyeri and K. Navi, "Novel Efficient Adder Circuits for Quantum-Dot Cellular Automata", Journal of Computational and Theoretical Nanoscience, vol. 8, no. 9, pp. 1769-1775, 2011. Available: 10.1166/jctn.2011.1881. [10] C. Labrado and H. Thapliyal, "Design of adder and subtractor circuits in majority logic‐based field‐coupled QCA nanocomputing", Electronics Letters, vol. 52, no. 6, pp. 464-466, 2016. Available: 10.1049/el.2015.3834. [11] A. Bahar and S. Waheed, "Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata", SpringerPlus, vol. 5, no. 1, 2016. Available: 10.1186/s40064-016-2220-7. [12] K. Kim, K. Wu and R. Karri, "The Robust QCA Adder Designs Using Composable QCA Building Blocks", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 1, pp. 176-183, 2007. Available: 10.1109/tcad.2006.883921. [13] A. Gin, P. Tougaw and S. Williams, "An alternative geometry for quantum-dot cellular automata", Journal of Applied Physics, vol. 85, no. 12, pp. 8281-8286, 1999. Available: 10.1063/1.370670. [14] I. Hanninen and J. Takala, "Robust Adders Based on Quantum-Dot Cellular Automata", 2007 IEEE International Conf. on Application-specific Systems, Architectures and Processors (ASAP), 2007. Available: 10.1109/asap.2007.4459295 [Accessed 13 February 2022]. [15] P. Tougaw and C. Lent, "Logical devices implemented using quantum cellular automata", Journal of Applied Physics, vol. 75, no. 3, pp. 1818-1825, 1994. Available: 10.1063/1.356375. [16] R. Akeela, and M. D. Wagh, "A five-input majority gate in quantum-dot cellular automata." NSTI Nanotech, pp. 978- 981. [17] A. Roohi, H. Khademolhosseini, S. Sayedsalehi and K. Navi, "A symmetric quantum-dot cellular automata design for 5-input majority gate", Journal of Computational Electronics, vol. 13, no. 3, pp. 701-708, 2014. Available: 10.1007/s10825-014-0589-5. [18] S. Sheikhfaal, S. Angizi, S. Sarmadi, M. Hossein Moaiyeri and S. Sayedsalehi, "Designing efficient QCA logical circuits with power dissipation analysis", Microelectronics Journal, vol. 46, no. 6, pp. 462-471, 2015. Available: 10.1016/j.mejo.2015.03.016. [19] P. Tougaw and C. Lent, "Dynamic behavior of quantum cellular automata", Journal of Applied Physics, vol. 80, no. 8, pp. 4722-4736, 1996. Available: 10.1063/1.363455. [20] J. Timler and C. Lent, "Power gain and dissipation in quantum-dot cellular automata", Journal of Applied Physics, vol. 91, no. 2, pp. 823-831, 2002. Available: 10.1063/1.1421217. [21] W. Liu, S. Srivastava, L. Lu, M. O'Neill and E. Swartzlander, "Are QCA cryptographic circuits resistant to power analysis attack?", IEEE Transactions on Nanotechnology, vol. 11, no. 6, pp. 1239-1251, 2012. Available: 10.1109/tnano.2012.2222663. [22] S. Srivastava, S. Sarkar and S. Bhanja, "Estimation of Upper Bound of Power Dissipation in QCA Circuits", IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 116-127, 2009. Available: 10.1109/tnano.2008.2005408. [23] S. Srivastava, S. Sarkar and S. Bhanja, "Estimation of Upper Bound of Power Dissipation in QCA Circuits", IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 116-127, 2009. Available: 10.1109/tnano.2008.2005408. [24] M. Rahimi Azg, O. Kavehei and K. Navi, "A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders", Journal of Applied Sciences, vol. 7, no. 22, pp. 3460-3468, 2007. Available: 10.3923/jas.2007.3460.3468. [25] K. Walus, T. Dysart, G. Jullien and R. Budiman, "QCADesigner: A Rapid Design and Simulation Tool for Quantum-Dot Cellular Automata", IEEE Transactions On Nanotechnology, vol. 3, no. 1, pp. 26-31, 2004. Available: 10.1109/tnano.2003.820815. [26] A. Thiem, "Qcapro: Professional functionality for performing and evaluating qualitative comparative analysis, r package version 1.1-0," URL: http://www. alrikthiem. net/software, 2016. | ||
آمار تعداد مشاهده مقاله: 360 تعداد دریافت فایل اصل مقاله: 333 |