تعداد نشریات | 27 |
تعداد شمارهها | 613 |
تعداد مقالات | 6,232 |
تعداد مشاهده مقاله | 9,350,145 |
تعداد دریافت فایل اصل مقاله | 6,102,584 |
Semilinear logics with knotted axioms | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 3، دوره 19، شماره 2، خرداد و تیر 2022، صفحه 17-30 اصل مقاله (244.18 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2022.6785 | ||
نویسنده | ||
E. Yang* | ||
Department of Philosophy \& Institute of Critical Thinking and Writing, Jeonbuk National University, Jeonju, Korea | ||
چکیده | ||
Standard completeness, completeness on the real unit interval $[0,1]$, is one of important research areas in mathematical fuzzy logic. Recently, standard completeness for semilinear logics with knotted axioms has been investigated \emph{proof-theoretically} by introducing and eliminating density rule. This paper introduces \emph{model-theoretic} completeness for such logics. To this end, it is first shown that knotted axioms can be divided into left and right ones and then proved that mianorm-based logic systems with left and right knotted axioms are standard complete. This completeness is provided by embedding linearly ordered algebras into densely ordered ones and these algebras again into $[0,1]$. More exactly, mianorm-based systems with left and right knotted axioms and their algebraic structures are first discussed. After some examples of mianorms satisfying left and right knotted properties are introduced, standard completeness for those logics is established model-theoretically using the above construction. Finally, this investigation is extended to their corresponding involutive fixpointed systems. | ||
کلیدواژهها | ||
Knotted axioms؛ mianorm؛ semilinear logic؛ fuzzy logic؛ substructural logic | ||
مراجع | ||
[1] P. Baldi, A note on standard completeness for some extensions of uninorm logic, Soft Computing, 18 (2014), 1463-1470.
[2] P. Baldi, A. Ciabattoni, Standard completeness for uninorm-based logics, in 2015 IEEE International Symposium on Multiple-Valued Logic, (2015), 78-83.
[3] S. Banerjee, Fuzzy membership, partial aggregation and reinforcement in multi-sensor data fusion, in Proceedings of 11rd WSEAS International Conference on Computers, Crete Island, Greece, (2007), 125-130.
[4] M. Bianchi, F. Montagna, n-contractive BL-logics, Archive for Mathematical Logic, 50 (2011), 257-285.
[5] B. D. Burrell, C. L. Sahley, K. J. Muller, Non-associative learning and serotonin induce similar bidirectional changes in excitability of a neuron critical for learning in the medicinal leech, Journal of Neuroscience, 15 (2001), 1401-1412.
[6] H. Bustince, M. Pagola, R. Mesiar, E. Hullermeier, F. Herrena, Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparison, IEEE Transactions on Fuzzy Systems, 20 (2012), 405-415.
[7] R. Cignoli, F. Esteva, L. Godo, A. Torrens, Basic fuzzy logic of continuous t-norms and their residua, Soft Computing, 4 (2000), 106-112.
[8] P. Cintula, R. Horčík, C. Noguera, Non-associative substructural logics and their semilinear extensions: Axiomatization and completeness properties, Review of Symbolic Logic, 6 (2013), 394-423.
[9] P. Cintula, R. Horčík, C. Noguera, The quest for the basic fuzzy logic, in Petr Hájek on Mathematical Fuzzy Logic, F. Montagna, (ed), Springer, Dordrecht, (2015), 245-290.
[10] P. Cintula, C. Noguera, Implicational (semiliear) logics I: A new hierarchy, Archive for Mathematical Logic, 49 (2010), 417-446.
[11] P. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, in Handbook of Mathematical Fuzzy Logic, Vol. 1, P. Cintula, R. Horčík, C. Noguera (eds.), College Publications, London, (2011), 103-207.
[12] B. Detyniecki, B. Bouchon-Meunier, R. R. Yager, Balance operator: A new version on aggregation operators, in Proceedings of the Joint EUROFUSE-SIC ’99, International Conference, Budapest, Hungary, (1999), 241-246.
[13] F. Durante, C. Sempi, Semicopulae, Kybernetika, 41 (2005), 315-328.
[14] V. Dzhunushaliev, A non-associative quantum mechanics, Foundations of Physics Letters, 19 (2006), 57-167.
[15] V. Dzhunushaliev, Toy models of a non-associative quantum mechanics, Advances in High Energy Physics, 2007 (2007), 10 pages, Doi: 10.1155/2007/12387.
[16] F. Esteva, L. Godo, Monoidal t-norm based logic: Towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124 (2001), 271-288.
[17] J. C. Fodor, T. Keresztfalvi, Nonstandard conjunctions and implications in fuzzy logic, International Journal of Approximate Reasoning, 12 (1995), 69-84.
[18] J. C. Fodor, R. R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 6 (1997), 411-427.
[19] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated lattices: An algebraic glimpse at substructural logics, Elsevier, Amsterdam, 2007.
[20] N. Galatos, H. Ono, Cut elimination and strong separation for substructural logics, Annals of Pure and Applied Logic, 161 (2010), 1097-1133.
[21] F. S. Garcia, P. G. Alvarez, ´ Two families of fuzzy integrals, Fuzzy Sets and Systems, 18 (1986), 67-81.
[22] I. R. Goodman, V. Kreinovich, R. Trejo, J. Martinez, R. Gonzalez, An even more realistic (non-associative) logic and its relation to phychology of human reasoning, in IFSA World Congress and 20th NAFIPS, International Conference, Vancouver, Canada, 2001.
[23] I. R. Goodman, V. Kreinovich, R. Trejo, J. Martinez, R. Gonzalez, A realistic (non-associative) logic and a possible explanations of 7 ± 2 law, International Journal of Approximate Reasoning, 29 (2002), 235-266.
[24] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Amsterdam, 1998.
[25] P. Hájek, R. Mesiar, On copulas, quasicopulas and fuzzy logic, Soft Computing, 12 (2008), 1239-1243.
[26] R. Horčík, C. Noguera, M. Petrík, Extending intuitionistic linear logic with Knotted structural rules, Notre Dame Journal of Formal Logic, 35 (1994), 219-242.
[27] R. Hori, H. Ono, H. Schellinx, On n-contractive fuzzy logics, Mathematical Logic Quarterly, 53 (2007), 268-288.
[28] S. Jenei, F. Montagna, A proof of standard completeness for Esteva and Godo’s logic MTL, Studia Logica, 70 (2002), 183-192.
[29] A. Jurio, H. Bustince, M. Pagola, A. Pradera, R. R. Yager, Some properties of overlap and grouping functions and their application to image thresholding, Fuzzy Sets and Systems, 229 (2013), 69-90.
[30] M. Kanduslki, The equivalence of nonassociative Lambek categorical grammars and context-free grammars, Zeitschrift Für Mathematische Logik und Grundlagen der Mathematik, 34 (1988), 103-114.
[31] R. A. Kleinknecht, Comments on: Non-associative fear acquisition: A review of the evidence from retrospective and longitudinal research, Behaviour Research and Therapy, 40 (2002), 159-163.
[32] E. P. Klement, A. Kolesárová, Extension to copulas and quasicopulas as special 1-Lipschitz aggregation operators, Kybernetika, 41 (2005), 329-348.
[33] V. Kreinovich, Towards more realistic (e.g., non-associative) “and”- and ”or”-operations in fuzzy logic, Soft Computing, 8 (2004), 274-280.
[34] H. W. Liu, Semi-uninorms and implications on a complete lattice, Fuzzy Sets and Systems, 191 (2012), 72-82.
[35] G. Metcalfe, F. Montagna, Substructural fuzzy logics, Journal of Symbolic Logic, 72 (2007), 834-864.
[36] R. B. Nelson, Introduction to copulas, Springer, New York, 2005.
[37] Y. Ouyang, On fuzzy implications determined by aggregation operators, Information Sciences, 193 (2012), 153-162.
[38] Y. Su, H. W. Liu, W. Pedrycz, The distributivity equations of semi-uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 27 (2019), 329-349.
[39] C. J. Van Alten, The finite model property for knotted extensions of propositional linear logics, Journal of Symbolic Logic, 70 (2005), 84-98.
[40] S. Wang, Uninorm logic with the n-potency axiom, Fuzzy Sets and Systems, 205 (2012), 116-126.
[41] S. Wang, A proof of the standard completeness for the involutive uninorm logic, Symmetry, 11 (2019), 1-50.
[42] R. R. Yager, On inference structures for fuzzy systems modeling, in Proceedings of 3rd IEEE International Conference on Fuzzy Systems, Orlando, (1994), 1252-1256.
[43] R. R. Yager, On mean type aggregation, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26 (1994), 209-221.
[44] R. R. Yager, A. Kelman, Fusion of fuzzy information with considerations for compatibility, partial aggregation, and reinforcement, International Journal of Approximate Reasoning, 15 (1996), 93-122.
[45] R. R. Yager, A. Rybalov, Full reinforcement operator in aggregation techniques, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 28 (1998), 757-769.
[46] E. Yang, Non-associative fuzzy-relevance logics, Korean Journal of Logic, 12(1) (2009), 89-110.
[47] E. Yang, On the standard completeness of an axiomatic extension of the uninorm logic, Korean Journal of Logic, 12(2) (2009), 115-139.
[48] E. Yang, An axiomatic extension of the uninorm logic revisited, Korean Journal of Logic, 17 (2014), 323-348.
[49] E. Yang, Weakening-free, non-associative fuzzy logics: Micanorm-based logics, Fuzzy Sets and Systems, 276 (2015), 43-58.
[50] E. Yang, Basic substructural core fuzzy logics and their extensions: Mianorm-based logics, Fuzzy Sets and Systems, 301 (2016), 1-18.
[51] E. Yang, Involutive basic substructural core fuzzy logics: Involutive mianorm-based logics, Fuzzy Sets and Systems, 320 (2017), 1-16.
[52] E. Yang, Mianorm-based logics with n-contraction and n-mingle axioms, Journal of Intelligent and Fuzzy Systems, 37 (2019), 7895-7907.
[53] E. Yang, Mianorm-based logics with left and right n-potency axioms, Korean Journal of Logic, 23 (2020), 1-24.
[54] E. Yang, Micanorm aggregation operators: Basic logico-algebraic properties, Soft Computing, 25 (2021), 13167- 13180.
[55] L. A. Zadeh, Preface, in Fuzzy Logic Technology and Applications, R. J. II Marks (ed.), IEEE, Piscataway, (1994). The vertices of a graph, Proceeding of the international symposium on theory of graphs, Rome, Italy, July 1966. | ||
آمار تعداد مشاهده مقاله: 390 تعداد دریافت فایل اصل مقاله: 418 |