
R. A. Mohamed 1, S. E. Ahmed 1,2, A. M. Aly 1,2, S. M. Abo-Dahab 1,3 and M. S. Soliman 1

1 Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt.
2 Department of Mathematics, Faculty of Science, Abha, King Khalid University, Saudi Arabia.
3 Computer Science Department, Faculty of Computers and Information, Luxor University, Luxor, Egypt

ABSTRACT: This article is concerned with study of the steady and incompressible three-dimensional flow of magnetohydrodynamic couple stress nanofluids over a stretching sheet through a porous medium under influence of, non-linear thermal radiation and heat generation/absorption, taking into account effects of both Brownian motion coefficient and thermophoresis coefficient. On the other hand, the system of nonlinear partial differential equations governing the flow process has been transformed into a system of nonlinear ordinary differential equations using similarity transformations and dimensionless variables, knowing that the numerical method used to solve the new system of differential equations is the fourth-order Runge-Kutta method with the shooting technique in the code of MATLAB program. The effects of all physical parameters resulting from this study on the distributions of velocity, temperature and concentration of nanoparticles within the base fluid were studied by means of graphs that were made by the MATLAB program. Finally, some of the results of the current study showed that the effects of the magnetic field parameter and Darcy number on the velocity distribution we negative, while their effect on the concentration of nanoparticle distribution was positive.

KEYWORDS: Couple stress fluid, Nanofluid, Thermal radiation, Magnetohydrodynamic (MHD), Porous media.

INTRODUCTION

Researchers in the field of fluid properties around the world are making every effort to study the problems of non-Newtonian fluid flow, and the reason behind this is the tremendous progress in technological applications resulting from the study of this type of fluid at the present time. Non-Newtonian fluids are one of the types of fluids that are characterized by viscosity, as they are thick fluids in which viscosity changes according to the change in pressure and temperature, examples of these fluids, nature extrusion of polymer fluids, drilling mud, suspension solutions, cosmetic and food products, solidification of liquid crystals, cooling of metallic plates in a bath, exotic lubricants, also ketchup, toothpaste, blood, paints colloidal and many others. Couple Stress fluid theory is one of the most important theories that have attracted the attention of many researchers in the field of non-Newtonian fluid flow studies, it has got the special status because of the spin field in the fluid which sets up an anti-symmetric stress, known as couple stresses. Stokes [1] was the first to develop the fundamental theory and constituent rates of a double stress fluid model, the most important characteristic of this theory is that it links the couple pressures with the classical Cauchy pressures. On the other hand, the couple stress fluid contains randomly inelas-

Corresponding Author Email: m.soliman757@yahoo.com
Note. This manuscript was submitted on January 9, 2021; approved on October 19.

The process of fluid flow influenced by a magnetic field is a physical phenomenon called magnetohydrodynamic, which is symbolized by MHD, on the other hand can be defined as the study of the magnetic properties and behavior of electrically conducting fluids. Examples of such magnetofluids include plasmas, liquid metals, salt water, and electrolytes. The word (magnetohydrodynamics) is derived from magneto meaning magnetic field, hydro meaning water, and dynamics meaning movement and who the first to start studying this field is Alfven [23] in 1942. On the other hand, the process of thermal radiation is the temperature emitted by hot objects like that thermal radiation emitted from incandescent light bulb emitting visible-light, infrared radiation emitted by a common household radiator or electric heater, as well as radiation from hot gas in outer space. A person near a raging bonfire feels the radiated energy of the fire, even if the surrounding air is very cold. Thermal radiation is generated when thermal energy is converted to electromagnetic radiation by the movement of the charges of electrons and protons in the material. Mabood et al. [24] debated features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation. Ahmed et al. [25] explained energy on the features of stratified mixed radiative-convecutive couple-stress nanofluid flows with motile over an magnetohydrodynamic Maxwell nanofluid flow over a stretching surface through a porous medium effects of nonlinear thermal radiation convective boundary conditions and heat generation/absorption. Mohamed et al. [26] studied MHD Jeffrey nanofluid flow over a stretching sheet through a porous medium in the presence of nonlinear thermal radiation and heat generation/absorption. Mohamed et al. [27] investigated MHD Casson nanofluid flow over a stretching surface embedded in a porous medium effect of thermal radiation and slop conditions. Bouslimi et al. [28] analyzed MHD Williamson nanofluid flow over a stretching sheet through a porous medium under effects of Joule heating, nonlinear thermal radiation, heat generation/absorption and chemical reaction. references [29-32] refers to studying the magnetohydrodynamic flow of non-Newtonian nanofluid with different geometries. Changdar and Soumen [33] studied analytical solution of mathematical model of magnetohydrodynamic blood nanofluid flowing through an inclined multiple stenosed arteries, also that Sedighi [34] investigated steady boundary layer magnetohydrodynamic viscous flow and heat transfer of nanofluid over stretching sheet in presence of radiation and heat source, while Ashikin et al. [35] analyzed rotating flow over a shrinking sheet in nanofluid by using Buongiorno model and thermophysical properties of nanoliquid. Entropy generation due to MHD mixed convection of nanofluid between two concentric cylinders with radiation and Joule heating effects presented Srinivasacharya and Shafeeurrahman [36], Borty et al. [27] performed analytical approach to a Jeffrey nanofluid flow towards a stagnation point coexisting with magnetic field and melting heat effects, and Raju et al. [38] provided a free convective heat transfer of MHD Cu- kerosene nanofluid with temperature dependent viscosity, on the other side, Jalilpour et al. [39] presented the MHD non-orthogonal stagnation point flow of a nanofluid towards a stretching surface in the presence of thermal radiation.

In fluid dynamics, fluid flow through a porous medium is defined as the flow of fluid through the pores or voids in this medium such as sponge, wood, or sand that is used in the water purification process, and the fluid flow through a porous medium help on store some of the fluid mass in the pores in this medium. Imtiaza et al. [40] exocogitated flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect. Awais et al. [41] examined the hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis. Muhammad et al. [42] investigated the squeezed flow of a nanofluid with Cattaneo–Christov heat and mass fluxes. Khan et al. [43] presented Brownian motion and thermophoresis effects on MHD mixed convective thin film second-grade nanofluid flow with hall Effect and heat transfer past a stretching sheet. Reddy et al. [44] investigated temperature-dependent viscosity and second order slip flow on MHD casson radiative nanofluid over stretching sheet. Hussain et al. [45] studied radiative magneto-nanofluid over an accelerated moving ramped temperature plate with hall effects. Naramgari and Sulochana et al. [46] take a study the MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles. Mahanthesha et al. [47] reviewed a study of nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition. Kumar et al. [48] analyzed hydro magnetic boundary layer slip flow of nanofluid through porous medium over a slandering stretching sheet. Hayat et al. [49] studied magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in presence of nonlinear thermal radiation. New features on MHD have been discussed considering external forces and parameters [50-52]. Kandasamy at al. [53] investigated thermophoresis and Brownian motion effects on MHD boundary-layer flow of a Nanofluid in the presence of thermal stratification due to solar radiation. Ramesh at al. [54] examined MHD flow of Maxwell fluid over a stretching sheet in the presence of
nanoparticles, thermal radiation and chemical reaction.

The main objectives of this research are to study the three-dimensional flow of electromagnetic couple stress nanofluids on a stretching surface through a porous medium taking into account the study of the effect of non-linear heat radiation and the heat generation/absorption on the distributions of velocity, temperature and concentration of nanoparticles in addition to the effects of Brownian motion coefficient and thermophoresis coefficient, by making graphs and numerical tables. On the other hand, the system of non-linear partial differential equations was transformed into a system of ordinary differential equations using the appropriate transformations and was numerically resolved using the fourth order Runge/Kutta method and the effects of all physical parameters were studied as previously using graphs and numerical tables.

FORMULATION OF THE PROBLEM

In the current study, the steady and incompressible flow of the magnetohydrodynamic couple stress nanofluid was considered a three-dimensional flow over a regular stretching surface through a suitable porous medium. Cartesian coordinates were selected to describe this study whereas affects the movement of this fluid a fixed magnetic field in the direction of the \( z \) - axis (perpendicular to the direction of the fluid movement) with the knowledge that the induced magnetic field it was neglected because Reynolds’s number was very small while the study is supported by new effects such as non-linear thermal radiation and heat generation/absorption coefficients. It was adopted the Cartesian coordinate system in such a way that \( x \) - axes, \( y \) - axes are in the direction of motion and \( z \) - axes is normal to the sheet. The sheet at \( z = 0 \) is stretched in \( x \) - and \( y \) - directions with velocities \( U_w(x) \) and \( V_w(y) \) respectively see Figure (1a). The governing boundary layer equations in the present flow is giving as follows:

![Fig. 1a. Effect of the magnetic field M on the velocity profile.](image)

Ding et al. [19] investigated heat transfer behavior of multi-walled carbon nanotubes (MWCNT) by flowing them in a horizontal tube. Their studies suggested that the concentration of CNT and the Reynolds number made good contribution to the heat transfer augmentation. Their results clearly indicate that CNTs having 0.5 wt% and at Reynolds number of 800, a maximum enhancement of 350% is achieved. Chen et al. [20] conducted a series of experimental studies to predict heat transfer coefficients and investigate the behavior of titanium nanotubes. They also performed some experiments to explore various factors, including effective thermal conductivity, forced convective heat transfer, and rheological behavior of nanofluids. Only a maximum of 5% enhancement was observed by the titanate nanofluids under particle loading of 2.5 wt%. Kayhani et al. [21] examined the pressure drop and heat transfer in a turbulent flow of the aqueous solution of TiO\(_2\) nanoparticles, which flowed in a constantly heated horizontal circular tube containing 0.1, 0.5, 1.0, 1.5 and 2.0% volume concentrations of nanoparticles. The results showed an increase in heat transfer coefficient as a result of increased nanofluid volume fraction. The Nusselt number was also found increased to be about 8% for nanofluid at a Reynolds number of 11800, with 2.0% nanoparticles volume fraction. Heat transfer coefficient and friction factor with SiO\(_2\)/water nanofluid up to 4% particle volume concentration were determined by Azmi et al. [22].

At a volumetric concentration of 3%, they saw an increasing and then a decreasing trend in heat transfer coefficients.

At this volumetric concentration, the maximum increase in the Nusselt number was approximately 38% within the Reynolds range. Esfe and Saeedodin [23] conducted a series of experimental studies on dynamic viscosity, Nusselt number, and thermal conductivity of MgO-water nanofluids flowing in a circular tube. The pure water and nanofluid with the nanoparticle volume fraction of 0.005, 0.01, 0.015, and 0.02 and the nanoparticles diameter of 20, 40, 50 and 60 nm were considered. Experimental results showed a tendency of heat transfer to increase due to the presence of nanoparticles in pure water. Ali [24] experimentally tested the internal convective heat transfer of SiO\(_2\)-water nanofluids flowing in a copper tube for a fully turbulent regime. He also determined the local convective heat transfer coefficient in different positions along the pipe in different Reynolds numbers. The maximum increase was 8-9% at 0.001 vol% SiO\(_2\) nanoparticles. However, convective heat transfer coefficient increased by 27% at 0.007 vol% SiO\(_2\) nanoparticles. Abdolbagi et al. [25] studied the forced convection heat transfer of CuO, TiO\(_2\) and Al\(_2\)O\(_3\) under turbulent flow through a straight square. The boundary conditions were applied under a 5000 W/m\(^2\) heat flux, the Reynolds number 10\(^4\)-10\(^6\), and a constant volume concentration of 1 to 4%.

The results suggested an increase in heat transfer and wall shear stress with increasing nanofluid volume concentration. CuO nanofluids appear to increase heat transfer...
significantly. The study remarked the enhancement of the friction factor and the Nusselt number is 2% and 21%, respectively, for the channel at all Reynolds numbers. Hemmat Esfe [26] et al. reported results of experiments on thermal conductivity, viscosity and turbulent heat transfer behavior of MgO–water nanofluid in a straight circular tube for the volume fraction of nanoparticles <1%. They observed that most of the conventional models fail to predict the thermal conductivity and dynamic viscosity of the MgO–water nanofluid accurately.

Their results indicated that addition of low value of nanoparticles to the base fluid results in enhanced heat transfer. As observed in the literature review, the heat transfer properties of MgO nanoparticles have been less studied than those of other metal oxide nanoparticles (e.g., Al₂O₃, TiO₂ and CuO). On the other hand, lack statistical analysis exists on the operating parameter. The majority of researchers indicated that nanoparticle concentration, temperature, and nanofluid flow rate (Reynolds number) affect heat transfer coefficient. Nevertheless, nothing could be understood by comparing the operational parameters. The present study includes an experimental study of the convective heat transfer of MgO–water nanofluids, which passes through a copper tube in a fully turbulent regime under constant heat flux conditions. Nusselt number and convective heat transfer coefficient were investigated in a very dilute concentration of nanoparticles. Local convective heat transfer coefficient was also observed at various points along the pipe. The main objectives of this study are three-fold: 1) to assess the impact of each parameter on the Nusselt number and local heat transfer coefficient and 2) to apply the statistical Taguchi experimental design method on the optimization of factors and to find a combination of parameters to achieve the maximum value of the Nusselt number and 3) to examine all the interaction effects of factors.

**PREPARATION OF THE NANOFLUID**

MgO nanoparticles with distilled water (as a base fluid) are used in this work. Nanoparticles are manufactured by the US Nanomaterials Research Company, USA. The specifications of the nanoparticles are shown in Table 1. Here, a transmission electron microscope (TEM) has been used to approximate the shape and size of MgO nanoparticles.

<table>
<thead>
<tr>
<th>Specification of nanoparticle used in this study</th>
<th>Magnesium Oxide (MgO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average particle size (nm)</td>
<td>20</td>
</tr>
<tr>
<td>Purity</td>
<td>&gt;98%</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>3580</td>
</tr>
<tr>
<td>Color</td>
<td>white</td>
</tr>
<tr>
<td>Morphology</td>
<td>nearly spherical</td>
</tr>
<tr>
<td>Specific area (m²/g)</td>
<td>&gt;60</td>
</tr>
<tr>
<td>Specific heat (J/kgK)</td>
<td>880</td>
</tr>
</tbody>
</table>

*Thermal conductivity (W/mK) | 45 |

Figure 1 demonstrates that the shape and size of nanoparticles are approximately spherical and around 20nm, respectively. Many researchers employ this method [27-28]. There are two methods, i.e., single-step and two-step, for nanofluid production. Providing stable nanofluid is a challenge. Various methods are used to achieve stable nanofluid, including changes in nanofluid pH, the addition of surfactants, and ultrasonic vibration. In this study, nanofluid was prepared with a concentration of 0.05 and 0.15 of vol%. A specific amount of MgO nanoparticles is weighed (accurate to three decimal places) to which distilled water was added as a base fluid. After one hour of mixing with a magnetic stirrer, the nanofluid was put in an ultrasonic vibrator (BANDELIN Company with a power = 240 kW and frequency = 35 kHz) for 5 hours. This procedure is utilized to create a stable suspension system of nanofluid and break the agglomeration of nanoparticles in fluid. The prepared solution remains stable at static conditions for 3 day after experimentation. No surfactant was utilized in the study as it may have affected the thermal conductivity of nanofluids [29-30]. Repeatability was assessed during the experiments. Some experiments were randomly repeated at various points in times, revealing a slight difference between the two. That is, over time, there has been no change in test results, indicating nanofluid stability.

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, 
\]

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} - \frac{\partial u}{\partial f} - \frac{\mu}{\rho_f K} u, 
\]

\[
u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 v}{\partial y^2} - \frac{\partial^2 v}{\partial z^2} - \frac{\mu}{\rho_f K} v, 
\]

\[
\frac{\partial \tau}{\partial x} + v \frac{\partial \tau}{\partial y} + w \frac{\partial \tau}{\partial z} = \frac{\partial^2 \tau}{\partial x^2} - \frac{1}{(\rho c)_f} \frac{\partial q_r}{\partial z} + \frac{q_r(T_r - T_0)}{(\rho c)_f} + \frac{\partial^2 \tau}{\partial y^2} + \frac{\partial^2 \tau}{\partial z^2}, 
\]

\[
u \frac{\partial \tau}{\partial x} + v \frac{\partial \tau}{\partial y} + w \frac{\partial \tau}{\partial z} = D_B \left( \frac{\partial^2 \tau}{\partial x^2} + \frac{\partial^2 \tau}{\partial y^2} + \frac{\partial^2 \tau}{\partial z^2} \right), 
\]

with the boundary conditions which can be written by as follows:

\[u = U_w(x) = ax, v = V_0(y) = by, w = 0, T = T_w(x),\]
\[
D_B \frac{\partial c}{\partial z} + \frac{D_T}{T_{oo}} \frac{\partial T}{\partial z} = 0, \text{ at } z = 0,
\]

\[
u \to 0, \nu_T \to 0, T \to T_{oo},
\]

\[
C \to C_{oo}, \text{ at } z \to \infty,
\]

(7)

where \( u, \nu \) and \( w \) represent the velocity components in the \( x, y \) and \( z \) directions respectively, \( \nu = \mu/\rho_f \) is the kinematic viscosity, \( \mu \) is the dynamic viscosity, \( K \) is the permeability, \( \rho_f \) is the density of base fluid, \( \nu' = n/\rho_f \) is the couple stress viscosity, \( n \) is the couple stress viscosity parameter, \( \sigma \) is the electrical conductivity, \( T \) is the temperature, \( \alpha = k/(\rho c)_f \) is the thermal diffusivity of base fluid, \( k \) is the thermal conductivity, \( (\rho c)_f \) is the heat capacity of fluid, \( q_r \) is the nonlinear radiative heat flux, \( C_{oo} \) is the effective heat capacity of nanoparticles, \( D_B \) is the Brownian diffusion coefficient, \( C \) is the nanoparticles concentration, \( D_T \) is the thermophoretic diffusion coefficient, \( T_w \) and \( T_{oo} \) are the temperatures of the surface and far away from the surface and \( C_{oo} \) is the nanoparticles concentration far away from the surface, not that \( w \) denotes the wall condition.

The velocities of the stretching surface and the wall temperature are:

\[
U_w(x) = ax, V_w(y) = by, T_w(x) = T_{oo} + T_0 x.
\]

(8)

Where \( a, b \) are the stretching rate and \( T_0 \) refers to the initial temperature. The nonlinear radiative heat flux \( q_r \) can be written as follows:

\[
q_r = -\frac{4\sigma^*}{3k^*} \frac{\partial (T^4)}{\partial z} = -\frac{16\sigma^*}{3k^*} \left( T^3 \frac{\partial T}{\partial z} \right).
\]

(9)

\[
\therefore \frac{1}{(\rho c)_f} \frac{\partial q_r}{\partial z} = \frac{1}{(\rho c)_f} \frac{\partial}{\partial z} \left( -\frac{4\sigma^*}{3k^*} \frac{\partial T^4}{\partial z} \right).
\]

(10)

When substituting by equation (10) in equation (4) the energy equation takes the following form:

\[
\frac{u}{\partial x} + \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = a \frac{\partial^2 T}{\partial z^2} - \frac{16\sigma^*}{3k^*(\rho c)_f} \left( T^3 \frac{\partial T}{\partial z} \right) + \frac{q_r - q_w}{(\rho c)_f} + \frac{T^3}{(\rho c)_f} \frac{\partial T}{\partial z} + \frac{T^3}{(\rho c)_f} \frac{\partial T}{\partial z}.
\]

(11)

Where \( \sigma^* \) is the Stefan-Boltzmann constant and \( k^* \) is the mean absorption coefficient. The similarity transformations and nondimensional variables used to convert the system of governing nonlinear partial differential equations (2), (3), (5) and (11) with the boundary conditions (6) and (7) are given in the following mathematical formulas:

\[
u = axf'(\eta), \nu_T = byg'(\eta), w = -\sqrt{\nu}(f'(\eta) + g'(\eta)),
\]

\[
\theta(\eta) = \frac{T - T_{oo}}{T_w - T_{oo}}, \phi(\eta) = \frac{c}{c_{oo}}, \eta = \frac{a}{\nu} z.
\]

(12)

It can be using the temperature ratio parameter

\[
\theta_w = \frac{T_w}{T_{oo}} \Rightarrow T = T_{oo}(1 + (\theta_w - 1)\theta), T_w > T_{oo}.
\]

Now the continuity equation (1) was automatically satisfied and the governing nonlinear partial differential equations (2), (3), (5) and (11) were converted by using the similarity transformations and nondimensional variables (12) to a new system of nonlinear ordinary differential equations as follows:

\[
f''''(\eta) + (f(\eta) + g(\eta))f''''(\eta) - f'(\eta)^2 - K_s f''''''(\eta) - (M + Da) f'(\eta) = 0,
\]

(13)

\[
g''''(\eta) + (f(\eta) + g(\eta))g''''(\eta) - g'(\eta)^2 - K_s g''''''(\eta) - (M + Da) g'(\eta) = 0,
\]

(14)

\[
\theta''(\eta) + pr \left[ R(1 + (\theta_w - 1)\theta)^3 \theta'(\eta) \right] + \left( f(\eta) + g(\eta) \theta'(\eta) + Nb \theta''(\eta) \phi'(\eta) \right) + Nt(\theta''(\eta))^2 + St(\eta) = 0,
\]

(15)

\[
\phi''(\eta) + Le(f(\eta) + g(\eta)) \phi'(\eta) + \frac{Nt}{Nb} \phi''(\eta) = 0.
\]

(16)

And the new boundary conditions can be written as follows:

\[
f(0) = 0, g(0) = 0, f'(0) = 1, g'(0) = C_s, f''''(0) = 0, g''''(0) = 0, \theta(0) = 1, Nb \phi'(0) + Nt \theta'(0) = 0,
\]

(17)

\[
f' 000 \to 0, g'(0) \to 0, f''''(0) \to 0, 0, g''''(0) \to 0, \theta(0) \to 0, \phi(0) \to 0.
\]

(18)

Whereas \( M = \sigma B_0^2/\rho_f \alpha \) is the magnetic field parameter, \( K_s = v' \alpha / \nu^2 \) is the couple stress parameter, \( C_s = b/\alpha \) is the ratio of stretching rates, \( R = 16\sigma^* T_{oo}^3 / 3k^* \) is the nonlinear thermal radiation parameter, \( Pr = \nu / \alpha \) is the Prandtl number, \( Nb = (\rho c)_f D_B C_{oo} / (\rho c)_f \nu \) is the Brownian motion parameter, \( Nt = (\rho c)_f D_T (T_{oo} - T_w) / (\rho c)_f \nu T_{oo} \) is the thermophoresis parameter, \( Le = \nu / D_B \) is the Lewis number parameter. \( Da = \mu/\rho_f \alpha k \) is the Darcy number and \( S = Q_o / (\rho a)_f c_p \) is the heat source \( \left( S > 0 \right) \) or sink \( \left( S < 0 \right) \) parameter.

The skin fraction coefficients and the local Nusselt number are given as follows:
\[ \sqrt{Re_x} C_{fx} = f''(0) - K_f f'''(0), \]  
(17)

\[ \sqrt{Re_x} C_{fy} = g''(0) - K_g g'''(0), \]  
(18)

\[ \frac{Nu_x}{\sqrt{Re_x}} = -(1 + R \theta_w^3) \theta'(0), \]  
(19)

It should be mentioned that in the absence of porous media and heat generation/absorption effects, the relevant results obtained are reduced as the results obtained by Hayat et al. [35].

**NUMERICAL SOLUTION**

The numerical methods that are used to solve ordinary differential equations are considered one of the best and simplest methods that enable researchers to overcome the problems they face in solving some differential equations that contain higher differential orders. On the other hand, there are many numerical methods, including, for example, the fourth order Runge-Kutta numerical method with the shooting technique, this method depends primarily on reducing the differential order of the differential equation in order to make its solution easier, this method is distinguished from other numerical methods in that the error rate in the solution is very small, and it also has a distinctive code that solves a set of differential equations for the problem within the MATLAB program. In the current study, the system of governing nonlinear partial differential equations (2), (3), (5) and (11) that controls the flow of the couple stress nanofluid with the boundary conditions (6) and (7) were transformed into a system of ordinary differential equations (13) – (16) with the new boundary conditions (17) and (18) by using the similarity transformations and nondimensional variables (12) which satisfied the continuity equation (1) and this is firstly. Secondly, the new system of nonlinear ordinary differential equations was solved numerically by using code of fourth-order Runge-Kutta method with shooting technique (which was previously mentioned) using MATLAB program in a special way, which will be present later. Function bvp4c was used to solve these equations inside MATLAB program, as that the step size \( \Delta \eta = 0.001 \) is used to obtain the numerical solution with \( \eta_{\text{max}} = 10 \). The equations (13) –(16) in the simplest form were written as follows:

\[ f''''(\eta) = \frac{f'''(\eta) + f(\eta)f''(\eta) - (f'(\eta))^2 - (M + Da)f'(\eta)}{K_s}, \]  
(20)

\[ g''''(\eta) = \frac{g'''(\eta) + f(\eta)g''(\eta) - (g'(\eta))^2 - (M + Da)g'(\eta)}{K_s}. \]  
(21)

\[ \theta''(\eta) = -\frac{Pr}{1 + \theta(\eta)^3} \theta'(\eta) + Nb \theta'(\eta) + Nt \theta'\theta''(\eta)^2 \]  
(22)

\[ \phi''(\eta) = \frac{-Le[f(\eta) + g(\eta)]}{Nb} \phi'(\eta), \]  
(23)

The previous equations (20) – (23) were entered into MATLAB program as follows:

\[ F(1) = y(2), \]
\[ F(2) = y(3), \]
\[ F(3) = y(4), \]
\[ F(4) = y(5), \]
\[ F(5) = \frac{y(4) + y(3)[y(1) + y(6)] - y(2)^2 - (M + Da)y(2)}{K_s}, \]
\[ F(6) = y(7), \]
\[ F(7) = y(8), \]
\[ F(8) = y(9), \]
\[ F(9) = y(10), \]
\[ F(10) = \frac{y(9) + y(8)[y(1) + y(6)] - y(7)^2 - (M + Da)y(7)}{K_s}, \]
\[ F(11) = y(12), \]
\[ F(12) = \frac{-Pr \left[ y(1) + y(6) - y(12)^2 - Nb y(12) + Nt y(12)^2 \right]}{1 + \theta(\eta)^3}, \]
\[ F(13) = y(14), \]
\[ F(14) = -Le[f(\eta) + g(\eta)]y(14) - \frac{Nt}{Nb} F(12). \]

With the boundary conditions (6) and (7) which can be written as follows:

\[ y_a(1) = 0, y_a(6) = 0, y_a(2) = 1, y_a(7) = \]
\[ C_s, y_a(3) = 0, y_a(8) = 0, y_a(11) = 1, \]
\[ Nb y_a(14) + Nt y_a(12) = 0, y_b(2) = 0, y_b(7) = \]
\[ 0, y_b(3) = 0, y_b(8) = 0, y_b(11) = 0, \]
\[ y_b(13) = 0. \]
Taking into account all of the following:

\[ f(\eta) = f'(\eta) = f''(\eta) = f'''(\eta) = \]
\[ \psi(9), \quad \psi(2), \quad \psi(3), \quad \psi(4), \]
\[ g''(\eta) = g'''(\eta) = g''''(\eta) = g'''(\eta) = \]
\[ \psi(5), \quad F(5), \quad \psi(6), \quad \psi(7), \]
\[ \theta(\eta) = \theta'(\eta) = \theta''(\eta) = \phi(\eta) = \]
\[ \psi(11), \quad \psi(12), \quad F(11), \quad \psi(13), \]
\[ \phi'('(\eta) = f(0) = g(0) = \]
\[ \psi(14), \quad F(14), \quad \psi(6), \quad \psi(10), \]
\[ f'(0) = g'(0) = f''(0) = g''(0) = \]
\[ \psi(2), \quad \psi(7), \quad \psi(3), \quad \psi(8), \]
\[ \theta(0) = \phi'(0) = f'(\infty) = g'(\infty) = \]
\[ \psi(11), \quad \psi(14), \quad \psi(2), \quad \psi(7), \]
\[ \phi'(\infty) = \theta'(\infty) = \phi(\infty) = \]
\[ \psi(3), \quad \psi(8), \quad \psi(11), \quad \psi(13). \]

And for the credibility of the results of the current study, a numerical comparison was made between the results of the current study and the results of the work published by Hayat et al. [49], Kandasamy at al. [53] and Ramesh at al. [54] by calculating the numerical values of the local Nusselt number \( -\theta'(0) \) in Tables 1, 2 and 3. It was observed that there is a strong convergence between the numerical values and this closeness in values between the previously mentioned works and the current study gives the reader or researcher great credibility for this study. As for Table 4 it shows the numerical values of the skin friction coefficients and the local Nusselt number for all the values taken by all the important physical parameters resulting from the current study.

### Table 1

<table>
<thead>
<tr>
<th>( Pr )</th>
<th>Kandasamy et al [53]</th>
<th>Ramesh et al [54]</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.4542</td>
<td>0.4543</td>
<td>0.4543</td>
</tr>
<tr>
<td>2</td>
<td>0.9114</td>
<td>0.9112</td>
<td>0.9091</td>
</tr>
<tr>
<td>7</td>
<td>0.8952</td>
<td>1.8953</td>
<td>1.8953</td>
</tr>
<tr>
<td>20</td>
<td>0.3538</td>
<td>3.3538</td>
<td>3.3543</td>
</tr>
<tr>
<td>70</td>
<td>6.4621</td>
<td>6.4669</td>
<td>6.4669</td>
</tr>
</tbody>
</table>

### Results and Discussion

As was previously explained, the flow problem of the couple stress nanofluid takes place through a suitable porous medium on a stretching sheet or a rubber surface, and the flow process is subject to some important external physical factors, which are non-linear thermal radiation, heat generation and absorption. This study resulted in an important set of physical parameters, which are: the couple stress parameter \( K_s \), the ratio of stretching rates parameter \( C_s \), the Brownian motion parameter \( Nb \), the thermophoresis parameter \( Nt \), Prandtl number \( Pr \), Lewis number \( Le \), the magnetic field parameter \( M \), the Darcy number \( Da \), the non-linear thermal radiation parameter \( R \), the heat source/sink parameter \( S \) and the ratio temperature parameter \( s_w \). As for the explanation and interpretation of the results, they are presented as follows:

### Velocity Distribution

Figure 1 explains the effect of the magnetic field parameter \( M \) on the velocity distribution \( f'(\eta) \) and by looking at this figure it can be seen that the velocity distribution decreases significantly when increasing the magnetic field parameter. Physically the increasing in the magnetic field parameter creates a counter-force to the direction of fluid this force resists the fluid's movement and
its direction is counter to the fluid's movement this force is called the Lorentz force this force slows down the movement of the fluid and this is the main and sufficient physical reason for the decrease in the velocity distribution subject to the magnetic field parameter. At the same time, the effect of the Darcy number $Da$ on the velocity distribution $f'(\eta)$ is observed in Figure 2, it explains that the velocity distribution of the fluid becomes continually decreasing when the values of the Darcy number $Da$ enhancement. Physically, the porous medium represents one of the types of external resistance forces that work to resist the movement of the fluid through it, and thus the velocity of the fluid decreases, it is known that increasing the values of Darcy number changes the rate of fluid permeability through the porous medium, and this leads to a decrease in the velocity distribution.

$R$ and ratio temperature parameter $\theta_w$ leads to a significant rise in the fluid temperature. Physically, the enhancement in the two parameters non-linear thermal radiation parameter and the ratio temperature work to activate and reinforce the fluid particles by gaining thermal energy that increases the thermal diffusion and thermal distribution, and this in turn raises the temperature and leads to an increase in the size of the boundary layer and raising its temperature. On the other side, Prandtl number is a dimensionless quantity that puts the viscosity of the fluid in correlation with the thermal conductivity. Prandtl number is a dimensionless quantity that puts the viscosity of a fluid in correlation with the thermal conductivity. It therefore assesses the relation between momentum diffusivity and thermal diffusivity capacity of a fluid so that, Figure 5 shows the negative effect of the Prandtl number $Pr$ on the temperature distribution $\theta(\eta)$, meaning that the greater the values of the Prandtl number, the lower the fluid temperature. Physically, the relationship between Prandtl number and temperature is invariably inverse relationship because the large Prandtl number values possess lower thermal diffusivity and the opposite is also true, thus enhancing the values of the Prandtl number make the change in the thermal diffusivity very small or it reduces the temperature distribution $\theta(\eta)$. By looking at Figure 6 you can see the change in the temperature distribution $\theta(\eta)$ under effect of the heat generation/absorption parameter $S$, the type ($S > 0$) means a heat generation and the type ($S < 0$) means a heat absorption, It was found that in the case of the heat generation there is an escalation in the spread and distribution of temperature $\theta(\eta)$ and also the escalation and growth of the boundary layer thickness and in the case of heat absorption this means that the temperature of the fluid becomes declining and by transporting from the heat absorption to the heat generation by enhancing the values of the heat generation/absorption parameter, a high thermal diffusion occurs that makes the temperature of the boundary layer continues to rise, and this leads to a rise in the temperature distribution of the fluid, that is the physical meaning. And when looking at the Figure 7 it can be find an enhancement in the fluid temperature distribution $\theta(\eta)$ resulted from the effect of increasing values of the thermophoresis parameter $Nt$ on the fluid temperature distribution $\theta(\eta)$. Physically, when talking about the phenomenon thermophoresis inside the fluid, there must be two heat sources, one of which is hot that raises the temperature of the fluid around it and the other is cold, so the fluid particles from the hot source acquire a temperature that make it migrates to the cold medium, which raises the temperature of the cold medium of the fluid Therefore, the thermophoresis coefficient enhances the fluid temperature in general.

**Temperature distributions**

Figures 3 and 4 shows the influence of non-linear thermal radiation parameter $R$ and the ratio temperature parameter $\theta_w$ on the fluid temperature distribution $\theta(\eta)$, it is clear that the enhancement of non-linear thermal radiation parameter

![Fig. 1. Effect of the magnetic field $M$ on the velocity profile.](image1)

![Fig. 2. Effect of Darcy number $Da$ on the velocity profiles.](image2)
According to Figures 8 and 9 they illustrate the negatively impacts each of couple stress parameter $K_s$ and the ratio of stretching rates parameter $C_s$ on the fluid temperature distribution $\theta(\eta)$, an increase in both leads to a decrease in the thermal diffusion rate and a decrease in temperature and boundary layer size.
Concentration of nanoparticles distributions

Figures 10 and 11 show the positive effects for the concentration of nanoparticles distribution under the influence of the magnetic field parameter $M$ and Darcy number $Da$, the significant improvement in the concentration of nanoparticles inside the base fluid was shown when the values of the previous two parameters were enhanced. Physically, the main reason behind this is that when a magnetic field is applied to the fluid containing nanoparticles these microparticles respond to this field which stimulates them and thus increases their concentration, due to the susceptibility of these nanoparticles to their high ability to receive electric and magnetic fields see figure 10.

In the case of an increase in the concentration of nanoparticles distribution when the values of Darcy number $Da$ increase this is due to the rate of permeability of the porous medium, which makes the thickness of the boundary layer of nanoparticles continuously increasing see Figure 11.

Figure 12 indicates the effect of the Brownian motion parameter $Nb$ on the concentration of nanoparticles distribution with the remarkable improvement in the values of the Brownian motion parameter $Nb$ a significant decrease in the concentration distribution of nanoparticles is observed within the base fluid. Physically, the improvement in the Brownian motion coefficient leads to an increase in the random movement of nanoparticles inside the fluid, which causes a decrease in the nanoparticle concentration. On the other hand, nanoparticles lose part of their kinetic energy inside the fluid which deplete the thickness of the boundary layer of nanoparticles. Regarding the change that occurs in the concentration of nanoparticles distribution in the case of the effect of the thermophoresis parameter $Nt$ in Figure 13, it can be seen that the escalation in the values of the thermophoresis parameter leads to a higher concentration of the nanoparticle distribution. Physically, the increase in the thermophoresis parameter $Nt$ values is followed by a rise in the thermal energy of the nanoparticles, which leads to an increase in the temperature of the liquid, and thus the nanoparticles’ kinetic energy becomes very large and increases the number of collisions and this is a sufficient reason to make the distribution of the concentration of nanoparticles large under the influence of this parameter. On the other hand, Figures 14 and 15 show the large positive change in the concentration of nanoparticles distribution under the influence of the nonlinear thermal radiation parameter $R$ and the ratio temperature parameter $\theta_w$, it has been shown that the enhancement in the values of the nonlinear thermal radiation coefficient and the growth in the values of the temperature ratio coefficient are followed by an increase in the concentration distribution of nanoparticles. Physically, the increase in the thermal radiation coefficient and the temperature ratio values gives a very wide range of thermal diffusion within the fluid, which stimulates and increases the concentration rate of nanoparticles and also causes the growth of the boundary layer of nanoparticles thickness of due to their superior thermal conductivity. When talking about the effect of the heat source/sink parameter $S$ on the concentration of nanoparticles distribution, you should be seeing Figure 16, with the enhancement in the heat source/sink parameter $S$ it was noted that the rate of impact becomes positive on the concentration of nanoparticles distribution. Physically when transporting from the heat sink rate to the heat source rate the nanoparticles acquire high thermal energy that increases their movement within the main fluid, which makes the rate of collisions between them large, and this leads to an increase in their concentration. Figures 17 and 18 show the negative effect of Prandtl number $Pr$ and Lewis number $Le$ on the concentration of nanoparticle distribution, each of them causes a weakening, reduction, and a significant decrease in this distribution. Physically, the rate of increase in Prandtl number values causes the nanoparticles to get closer to the surface and increases the chances of sticking to the surface, which makes the nanoparticle size volume weak. Brownian diffusion that makes the concentration distribution small. Finally, Figures 19 and 20 shows the influence each of the ratio of stretching rates parameter $C_s$ and the couple stress
parameter $K_s$ on the concentration of nanoparticles distribution, it was found that the enhancement in the values of these two parameters leads to a reduction in the concentration of nanoparticles distribution.

Fig. 11. Effects of the Darcy number $Da$ on the concentration of nanoparticles profile.

Fig. 12. Effects of the Brownian motion parameter $Nb$ on the concentration of nanoparticles profile.

Fig. 13. Effects of the thermophoresis parameter $Nt$ on the concentration of nanoparticles profile.

Fig. 14. Effects of the nonlinear thermal radiation parameter $R$ on the concentration of nanoparticles profile.

Fig. 15. Effects of the ratio radiation parameter $\theta_w$ on the concentration of nanoparticles profile.

Fig. 16. Effects of the thermophoresis parameter $Nt$ on the concentration of nanoparticles profile.
Profiles of the skin friction coefficient and the local Nusselt number

The Nusselt number is the ratio of convective to conductive heat transfer across a boundary. The convection and conduction heat flows are parallel to each other and to the surface normal of the boundary surface, and are all perpendicular to the mean fluid flow in the simple case. Figure 21 illustrates the influences of the heat source/sink parameter $S$ on the local Nusselt number in presence of increase in the thermophoresis parameter $Nt$, it is clear that the increase in each of the previous parameters leads to the decrease in the local Nusselt number meaning that the effects are negative in the case of regular temperature gradient. The skin friction coefficient is an important dimensionless parameter in boundary layer flows, it specifies the fraction of the local dynamic pressure that is felt as shear stress on the surface so, Figures 22 and 23 shows the effects each of magnetic field parameter $M$ and Darcy number $Da$ on the skin friction coefficients, it has been observed that the skin friction coefficient decrease with the increasing in values of both magnetic field parameter and Darcy number, Physically, this is explained by the fact that the regular decrease in the coefficient of skin friction means the regular decrease in the velocity gradations on the surface relative to the movement of the fluid.

CONCLUSION

The current study reviews the three-dimensional magnetohydrodynamic steady flow process of the incompressible non-Newtonian couple stress nanofluid through a suitable porous medium on a stretching surface. The flow process was subjected to some external physical factors such as non-linear thermal radiation and heat generation and absorption, taking into consideration the effect of the Brownian motion coefficient and also the effect of the thermophoresis coefficient. On the other hand, the system of nonlinear partial differential equations governing
the study of the flow problem has been transformed into a system of nonlinear ordinary differential equations by using the similarity transformations and dimensionless variables. Knowing that the new system of ordinary differential equations was solved numerically using the fourth-order Runge-Kutta method with the shooting technique using the code of the MATLAB program. The MATLAB program was used to create graphs showing the effects of all the important physical parameters resulting from the study on three main distributions that are the focus of this study, namely, the velocity distribution, the temperature distribution, and the concentration of nanoparticle distribution, in addition to, studying the effect of some of these parameters on the local Nusselt number and skin friction coefficient, with clarification of the important physical meanings of all parameters. It can be concluded the study by following remarks:

- The effects each of magnetic field parameter $M$ and Darcy number $Da$ were negative on the velocity distribution and positive on the concentration of nanoparticles distribution.
- The enhancement in the values of the non-linear thermal radiation parameter $R$, the ratio temperature parameter $\theta_w$, the thermophoresis parameter $Nt$ and the heat generation and absorption parameter $S$ lead to an enhancement in the distributions of both the temperature and the concentration of nanoparticles.
- The increase in the values each of Prandtl number $Pr$, the couple stress parameter $K_s$ and the ratio of stretching rates $C_s$ leads to a decrease in the temperature distribution
- The increase in the values of Lewis number $Le$, Prandtl number $Pr$, couple stress parameter $K_s$, Brownian motion parameter $Nb$ and the ratio of stretching rates $C_s$ follow by a decrease in the concentration of nanoparticles distribution.
- The relationship between the skin friction coefficient and each of the magnetic field parameter $M$ and the Darcy number $Da$ is a direct negative relationship, whereas, the local Nusselt number are decreasing when enhancement each of the heat source/sink parameter $S$ and thermophoresis parameter $Nt$.

ACKNOWLEDGMENT
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number (R.G.P2/27/42).
Table 4:
The values of the local Nusselt number and skin friction coefficient for $Da$, $S$, $M$, $Cr$, $Re$, $s$, $Co$, $G$, $G$, and $Re$.

<table>
<thead>
<tr>
<th>$Re$</th>
<th>$s$</th>
<th>$Co$</th>
<th>$G$</th>
<th>$G$</th>
<th>$Re$</th>
<th>$Re$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>5.5</td>
<td>2</td>
<td>2</td>
<td>5.5</td>
<td>3.3</td>
</tr>
<tr>
<td>3.5</td>
<td>4</td>
<td>5.5</td>
<td>2</td>
<td>2</td>
<td>5.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

REFERENCES


