تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,159 |
تعداد مشاهده مقاله | 9,107,486 |
تعداد دریافت فایل اصل مقاله | 5,939,305 |
Leader-Follower Formation Control of Uncertain USV Networks under Stochastic Disturbances | ||
International Journal of Industrial Electronics Control and Optimization | ||
دوره 5، شماره 2، شهریور 2022، صفحه 133-142 اصل مقاله (1.11 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2022.37987.1346 | ||
نویسندگان | ||
Ali Azarbahram1؛ Naser Pariz ![]() ![]() | ||
1Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Ferdowsi University of Mashhad | ||
3Electrical department, Faculty of Engineering, Ferdowsi University of Mashhad | ||
4Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
چکیده | ||
The robust adaptive leader-follower formation control of uncertain unmanned surface vehicles (USVs) subject to stochastic environmental loads is investigated in this paper. The stochastic additive noises are included in the kinematics which stands for the un-modeled dynamics and uncertainty. The disturbances induced by waves, wind and ocean currents in the kinetics are also separated into deterministic and stochastic components. A comprehensive model including kinematics and kinetics of each USV agent is then derived as stochastic differential equations including standard Wiener processes. Thus, the problem formulation is much more challenging and practical since both the exogenous disturbances and kinematics states are defined by stochastic differential equations. In order to guarantee that all the tracking errors converge to a ball centered at the origin in probability, quartic Lyapunov functions synthesis, dynamic surface control (DSC) technique, the projection algorithm, and neural networks (NNs) are employed. Finally, the simulation experiments quantify the effectiveness of proposed approach. | ||
کلیدواژهها | ||
Dynamic Surface Control (DSC)؛ Formation Control؛ Robust Adaptive Control؛ Stochastic Nonlinear Systems؛ Unmanned Surface Vehicles (USVs) | ||
مراجع | ||
[1] M. Krstic, I. Kanellakopoulos, and V. Petar, Nonlinear and adaptive control design. Wiley New York, 1995. [2] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multiagent formation control,” Automatica, vol. 53, pp. 424–440, Mar. 2015, doi: 10.1016/j.automatica.2014.10.022. [3] J. Qin, Q. Ma, Y. Shi, and L. Wang, “Recent Advances in Consensus of Multi-Agent Systems: A Brief Survey,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4972–4983, Jun. 2017, doi: 10.1109/TIE.2016.2636810. [4] S.-L. Dai, S. He, H. Lin, and C. Wang, “Platoon formation control with prescribed performance guarantees for USVs,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4237–4246, 2017. [5] S. He, M. Wang, S.-L. Dai, and F. Luo, “Leader–follower formation control of USVs with prescribed performance and collision avoidance,” IEEE Trans. Ind. Inform., vol. 15, no. 1, pp. 572–581, 2018. [6] X. Jin, “Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints,” Automatica, vol. 68, pp. 228–236, 2016. [7] V. I. Utkin, Sliding Modes in Control and Optimization. Springer Science & Business Media, 2013. [8] L. Hunt, Renjeng Su, and G. Meyer, “Global transformations of nonlinear systems,” IEEE Trans. Autom. Control, vol. 28, no. 1, pp. 24–31, Jan. 1983, doi: 10.1109/TAC.1983.1103137. [9] A. Isidori, Nonlinear control systems. Springer Science & Business Media, 2013. [10] J. Keighobadi and M. M. Fateh, “Adaptive Robust Tracking Control Based on Backstepping Method for Uncertain Robotic Manipulators Including Motor Dynamics,” Int. J. Ind. Electron. Control Optim., vol. 4, no. 1, pp. 13–22, Jan.2021, doi: 10.22111/ieco.2020.31792.1213. [11] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” IEEE Trans. Autom. Control, vol. 45, no. 10, pp. 1893–1899, Oct. 2000, doi: 10.1109/TAC.2000.880994. [12] Q. Su and M. Wan, “Adaptive Neural Dynamic Surface Output Feedback Control for Nonlinear Full States Constrained Systems,” IEEE Access, vol. 8, pp. 131590– 131600, 2020, doi: 10.1109/ACCESS.2020.3010027. [13] K. Li and Y. Li, “Adaptive Fuzzy Finite-time Dynamic Surface Control for High-order Nonlinear System with Output Constraints,” Int. J. Control Autom. Syst., vol. 19, no. 1, pp. 112–123, Jan. 2021, doi: 10.1007/s12555-019-0986-4. [14] Y. Gao and S. Tong, “Composite adaptive fuzzy output feedback dynamic surface control design for stochastic large-scale nonlinear systems with unknown dead zone,” Neurocomputing, vol. 175, pp. 55–64, 2016. [15] Z. Yu, S. Li, and F. Li, “Observer-based adaptive neural dynamic surface control for a class of non-strict-feedback stochastic nonlinear systems,” Int. J. Syst. Sci., vol. 47, no. 1, pp. 194–208, Jan. 2016, doi: 10.1080/00207721.2015.1043364. [16] M. Xia and T. Zhang, “Adaptive neural dynamic surface control for full state constrained stochastic nonlinear systems with unmodeled dynamics,” J. Frankl. Inst., vol. 356, no. 1, pp. 129–146, Jan. 2019, doi: 10.1016/j.jfranklin.2018.10.011. [17] F. Wang, B. Chen, Y. Sun, Y. Gao, and C. Lin, “Finite-Time Fuzzy Control of Stochastic Nonlinear Systems,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2617–2626, Jun. 2020, doi: 10.1109/TCYB.2019.2925573. [18] H. Wang, P. X. Liu, J. Bao, X.-J. Xie, and S. Li, “Adaptive Neural Output-Feedback Decentralized Control for LargeScale Nonlinear Systems With Stochastic Disturbances,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 972–983, Mar. 2020, doi: 10.1109/TNNLS.2019.2912082. [19] Z. Zhu, Y. Pan, Q. Zhou, and C. Lu, “Event-Triggered Adaptive Fuzzy Control for Stochastic Nonlinear Systems with Unmeasured States and Unknown Backlash-Like Hysteresis,” IEEE Trans. Fuzzy Syst., pp. 1–1, 2020, doi: 10.1109/TFUZZ.2020.2973950. [20] G. Wen, C. L. P. Chen, and Y. Liu, “Formation Control With Obstacle Avoidance for a Class of Stochastic Multiagent Systems,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5847–5855, Jul. 2018, doi: 10.1109/TIE.2017.2782229. [21] X. You, C.-C. Hua, H.-N. Yu, and X.-P. Guan, “Leaderfollowing consensus for high-order stochastic multi-agent systems via dynamic output feedback control,” Automatica, vol. 107, pp. 418–424, Sep. 2019, doi: 10.1016/j.automatica.2019.06.006. [22] R. Cui, L. Chen, C. Yang, and M. Chen, “Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6785–6795, 2017. [23] A. Naess and T. Moan, Stochastic dynamics of marine structures. Cambridge University Press, 2013. [24] K. D. Do, “Control of fully actuated ocean vehicles under stochastic environmental loads in three dimensional space,” Ocean Eng., vol. 99, pp. 34–43, 2015. [25] K. D. Do, “Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances,” Ocean Eng., vol. 111, pp. 267–278, Jan. 2016, doi: 10.1016/j.oceaneng.2015.10.038. [26] J.-B. Pomet and L. Praly, “Adaptive nonlinear regulation: Estimation from the Lyapunov equation,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 729–740, 1992. [27] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus. Springer, 2014. [28] H. Deng, M. Krstic, and R. J. Williams, “Stabilization of stochastic nonlinear systems driven by noise of unknown covariance,” IEEE Trans. Autom. Control, vol. 46, no. 8, pp. 1237–1253, 2001. [29] R. Skjetne, T. I. Fossen, and P. V. Kokotović, “Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory,” Automatica, vol. 41, no. 2, pp. 289–298, Feb. 2005, doi: 10.1016/j.automatica.2004.10.006. | ||
آمار تعداد مشاهده مقاله: 209 تعداد دریافت فایل اصل مقاله: 169 |