تعداد نشریات | 31 |
تعداد شمارهها | 700 |
تعداد مقالات | 6,843 |
تعداد مشاهده مقاله | 11,201,544 |
تعداد دریافت فایل اصل مقاله | 7,514,494 |
Monadic algebras of an involutive monoidal t-norm based logic | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 13، دوره 19، شماره 3، مرداد و شهریور 2022، صفحه 187-202 اصل مقاله (206.01 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2022.6951 | ||
نویسندگان | ||
J. T. Wang* 1؛ X. L. Xin2 | ||
1School of Science, Xi'an Shiyou University, Xi'an 710065, Shaanxi, China | ||
2School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China | ||
چکیده | ||
The main goal of this paper is to study universal and existential quantifiers on involutive monoidal t-norm based algebras, which are algebraic semantics for the logic of involutive left-continuous t-norms and their residua, and the resulting class of algebras will be called monadic IMTL-algebras. First we study some of their related algebraic properties and prove that the variety of monadic IMTL-algebras is the equivalent algebraic semantics of monadic predicate fuzzy logic $\mathbf{mMTL_{\forall}}$, which is equivalent to the modal fuzzy logic $\mathbf{S5(IMTL)}$, and show the completeness for $\mathbf{IMTL_{\forall}}$ via functional monadic IMTL-algebras. Moreover we start a systematic study of monadic algebraic structures that related to the monadic IMTL-algebras, some of which constitute the monadic MTL-algebras, monadic WNM-algebras, monadic NM-algebras, monadic BL-algebras, monadic MV-algebras and monadic Boolean algebras. Finally we give some representations of monadic IMTL-algebras. In particular, we character representable and directly indecomposable monadic IMTL-algebras by monadic filters. | ||
کلیدواژهها | ||
Mathematical fuzzy logic؛ monadic predicate fuzzy logic؛ monadic IMTL-algebra؛ functional monadic IMTL-algebra؛ representation | ||
مراجع | ||
[1] M. Bianchi, First-order nilpotent minimum logics: First steps, Archive for Mathematical Logic, 52 (2013), 295-316.
[2] R. A. Borzooei, S. K. Shoar, R. Ameri, Some types of filters in MTL-algebras, Fuzzy Sets and Systems, 187 (2012), 92-102.
[3] S. Burris, M. P. Sankappanavar, A course in universal algebra, Springer-Verlag, New York, 1981. [4] D. Castaño, C. Cimadamore, J. P. D. Verela, L. Rueda, Monadic BL-algebras: The equivalent algebraic semantics of Hájek’s monadic fuzzy logic, Fuzzy Sets and Systems, 320 (2017), 40-59.
[5] D. Castaño, C. Cimadamore, J. P. D. Verela, L. Rueda, Completeness for moandic fuzzy logics via functional algebras, Fuzzy Sets and Systems, 407 (2021), 161-174.
[6] L. C. Ciungu, Directly indecomposable residuated lattices, Iranian Journal of Fuzzy Systems, 6 (2009), 7-18.
[7] F. Esteva, L. Godo, Monoidal t-norm based logic: Towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124 (2001), 271-288.
[8] S. Ghorbani, Monadic pseudo equality algebras, Soft Computing, 23 (2019), 1499-1510.
[9] P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht, 1998.
[10] P. Hájek, On fuzzy modal logics S5(C), Fuzzy Sets and Systems, 161 (2010), 2389-2396.
[11] R. P. Halmos, Algebraic logic, I. Monadic Boolean algebras, Composition Mathematica, 12 (1955), 217-249.
[12] L. C. Holdon, A. Borumand Saeid, Regularity in residuated lattices, Iranian Journal of Fuzzy Systems, 16 (2019), 107-126.
[13] S. Jenei, F. Montagan, A proof of standard completeness for Esteva and Godo’s logic, Studia Logica, 70 (2002), 183-192.
[14] J. Rachůnek, D. Šalounová, Monadic bounded residuated lattices, Order, 30 (2013), 195-210.
[15] J. Rachůnek, F. Švrček, Monadic bounded residuated ℓ-monoids, Order, 25 (2008), 157-175.
[16] G. Revaz, Monadic BL-algebras, Georgian Mathematical Journal, 13 (2006), 267-276.
[17] J. D. Rutledge, A preliminary investigation of the infinitely many-valued predicate calculus, Ph. D, Thesis, Cornell University, 1959.
[18] J. T. Wang, P. F. He, Y. H. She, Monadic NM-algebras, Logic Journal of the IGPL, 27 (2019), 812-835.
[19] J. T. Wang, X. L. Xin, P. F. He, Monadic bounded hoops, Soft Computing, 22 (2018), 1749-1762.
[20] S. Zahiri, A. Borumand Saeid, The role of states in triangle algebras, Iranian Journal of Fuzzy Systems, 17 (2020), 163-176.
[21] S. Zahiri, A. Borumand Saeid, M. Zahiri, An investigation on the co-annihilators in triangle algebras, Iranian Journal of Fuzzy Systems, 15 (2018), 91-102.
[22] X. H. Zhang, Y. H. She, Fuzzy quantifiers and their integral semantics, Beijing: Science Press, 2017.
[23] H. J. Zhou, H. X. Shi, Stone duality for R0-algebras with internal states, Iranian Journal of Fuzzy Systems, 14 (2017), 139-161. | ||
آمار تعداد مشاهده مقاله: 506 تعداد دریافت فایل اصل مقاله: 584 |