تعداد نشریات | 31 |
تعداد شمارهها | 712 |
تعداد مقالات | 6,941 |
تعداد مشاهده مقاله | 11,411,529 |
تعداد دریافت فایل اصل مقاله | 7,790,730 |
Finite-time synchronization of fractional-order fuzzy Cohen-Grossberg neural networks with time delay | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 5، دوره 19، شماره 5، آذر و دی 2022، صفحه 47-61 اصل مقاله (635.83 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2022.7156 | ||
نویسندگان | ||
F. Zhao؛ J. Jian* | ||
Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, China | ||
چکیده | ||
This paper deals with the issues of the finite-time synchronization (FTS) for a class of fractional-order fuzzy Cohen-Grossberg neural networks (FOFCGNNs) with time delay. Based on the finite-time stability theory, fractional-order Razumikhin theorem and applying fractional-order differential inequalities and other inequality techniques, a few new and effective criteria formulated by testable algebraic inequalities are derived to ensure the FTS for the concerned models via designing a discontinuous control strategy. Finally, two numerical simulations examples are furnished to demonstrate the feasibility and effectiveness of the derived theoretical results. | ||
کلیدواژهها | ||
Fuzzy Cohen-Grossberg neural network؛ fractional-order؛ finite-time synchronization؛ fractional-order inequality؛ fractional-order Razumikhin-type theorem | ||
مراجع | ||
[1] A. Abdurahman, H. J. Jiang, Z. D. Teng, Finite-time synchronization for fuzzy cellular neural networks with timevarying delays, Fuzzy Sets and Systems, 297 (2016), 96-111.
[2] H. Akca, V. Covachev, Z. Covacheva, Global asymptotic stability of Cohen-Grossberg neural networks of neutral type, Journal of Mathematical Sciences, 205(6) (2015), 719-732.
[3] B. S. Chen, J. J. Chen, Razumikhin-type stability theorems for fractional-order differential systems and applications, Applied Mathematics and Computation, 254 (2015), 63-69.
[4] L. P. Chen, C. Liu, R. C. Wu, Y. G. He, Y. Chai, Finite-time stability criteria for a class of fractional-order neural networks with delay, Neural Computing and Applications, 27(3) (2016), 549-556.
[5] J. J. Chen, Z. G. Zeng, P. Jiang, Global Mittag-Leffler stability and synchronization of memristor-based fractionalorder neural networks, Neural Networks, 51 (2014), 1-8.
[6] M. Cohen, S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Transactions on Systems, Man, and Cybernetics, 13(5) (1983), 815-826.
[7] O. Faydasicok, New criteria for global stability of neutral-type Cohen-Grossberg neural networks with multiple delays, Neural Networks, 125 (2020), 330-337.
[8] W. N. He, L. X. Chu, Exponential stability criteria for fuzzy bidirectional associative memory Cohen-Grossberg neural networks with mixed delays and impulses, Advances in Difference Equations, 61(1) (2017), 1-16.
[9] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Hackensack, 2000.
[10] M. Hui, C. Wei, J. Zhang, H. H. C. Iu, N. Luo, R. Yao, L. Bai, Finite-time synchronization of memristor-based fractional-order Cohen-Grossberg neural networks, IEEE Access, 8 (2020), 73698-73713.
[11] J. G. Jian, W. L. Jiang, Lagrange exponential stability for fuzzy Cohen-Grossberg neural networks with time-varying delays, Fuzzy Sets and Systems, 277 (2015), 65-80.
[12] J. G. Jian, P. Wan, Global exponential convergence of fuzzy complex-valued neural networks with time-varying delays and impulsive effects, Fuzzy Sets and Systems, 338 (2018), 23-39.
[13] J. G. Jian, B. X. Wang, Global Lagrange stability for neutral-type Cohen-Grossberg BAM neural networks with mixed time-varying delays, Mathematics and Computers in Simulation, 116 (2015), 1-25.
[14] J. G. Jian, K. Wu, B. X. Wang, Global Mittag-Leffler boundedness of fractional-order fuzzy quaternion-valued neural networks with linear threshold neurons, IEEE Transactions on Fuzzy Systems, 29(10) (2021), 3154-3164.
[15] Y. Q. Ke, C. F. Miao, Stability analysis of fractional-order Cohen-Grossberg neural networks with time delay, International Journal of Computer Mathematics, 92(6) (2015), 1102-1113.
[16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, New York, 2006.
[17] F. C. Kong, R. Rakkiyappan, Finite-time and fixed-time synchronization control of discontinuous fuzzy Cohen-Grossberg neural networks with uncertain external perturbations and mixed time delays, Fuzzy Sets and Systems, 411 (2021), 105-135.
[18] F. C. Kong, Q. X. Zhu, T. W. Huang, New fixed-time stability lemmas and applications to the discontinuous fuzzy inertial neural networks, IEEE Transactions on Fuzzy Systems, 29 (2021), 3711-3722.
[19] F. C. Kong, Q. X. Zhu, R. Sakthivel, Finite-time and fixed-time synchronization control of fuzzy Cohen-Grossberg neural networks, Fuzzy Sets and Systems, 394 (2020), 87-109.
[20] F. C. Kong, Q. X. Zhu, R. Sakthivel, Finite-time and fixed-time synchronization analysis of fuzzy Cohen-Grossberg neural networks with discontinuous activations and parameter uncertainties, European Journal of Control, 56 (2020), 179-190.
[21] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, Nonlinear and adaptive control design, Wiley, New York, 1995.
[22] N. Laskin, Fractional market dynamics, Physica A, 287(3) (2000), 482-492.
[23] H. L. Li, J. D. Cao, H. J. Jiang, A. Alsaedi, Graph theory-based finite-time synchronization of fractional-order complex dynamical networks, Journal of the Franklin Institute, 355(13) (2018), 5771-5789.
[24] X. F. Li, J. A. Fang, W. B. Zhang, H. Y. Li, Finite-time synchronization of fractional-order memristive recurrent neural networks with discontinuous activation functions, Neurocomputing, 316 (2018), 284-293.
[25] L. L. Li, J. G. Jian, Exponential convergence and Lagrange stability for impulsive Cohen-Grossberg neural networks with time-varying delays, Journal of Computational and Applied Mathematics, 277 (2015), 23-35.
[26] X. Peng, H. Q. Wu, J. D. Cao, Global nonfragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations, IEEE Transactions on Neural Networks and Learning Systems, 30(7) (2019), 2123-2137.
[27] X. Peng, H. Q. Wu, K. Song, J. X. Shi, Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays, Neural Networks, 94 (2017), 46-54.
[28] A. Pratap, R. Raja, J. Cao, C. P. Lim, O. Bagdasar, Stability and pinning synchronization analysis of fractionalorder delayed Cohen-Grossberg neural networks with discontinuous activations, Applied Mathematics and Computation, 359 (2019), 241-260.
[29] R. Rakkiyappan, G. Velmurugan, J. Cao, Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays, Nonlinear Dynamics, 78(4) (2014), 2823-2836.
[30] S. Sevgen, New stability results for Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with multiple delays, Neural Networks, 114 (2019), 60-66.
[31] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cyberneticsm, 15(1) (1985), 116-132.
[32] G. Velmurugan, R. Rakkiyappan, J. D. Cao, Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural Networks, 73 (2016), 36-46.
[33] P. Wan, J. G. Jian, Global Mittag-Leffler boundedness for fractional-order complex-valued Cohen-Grossberg neural networks, Neural Processing Letters, 49(1) (2019), 121-139.
[34] L. G. Wan, A. L. Wu, Mittag-Leffler stability analysis of fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument, Advances in Difference Equations, 308(1) (2017), 1-19.
[35] Z. L. Wang, D. S. Yang, T. D. Ma, N. Sun, Stability analysis for nonlinear fractional-order systems based on comparison principle, Nonlinear Dynamics, 75(1) (2014), 387-402.
[36] R. Y. Xie, C. D. Li, Stability analysis on Cohen-Grossberg neural networks with saturated impulse inputs, Neural Processing Letters, 51(2) (2020), 1265-1283.
[37] S. Yang, C. Hu, J. Yu, H. J. Jiang, Exponential stability of fractional-order impulsive control systems with applications in synchronization, IEEE Transactions on Cybernetics, 50(7) (2020), 3157-3168.
[38] X. J. Yang, Q. K. Song, Y. R. Liu, Z. J. Zhao, Finite-time stability analysis of fractional-order neural networks with delay, Neurocomputing, 152 (2015), 19-26.
[39] T. Yang, L. B. Yang, The global stability of fuzzy cellular neural networks, IEEE Transactions on Circuits and Systems, 43(10) (1996), 880-883.
[40] S. Yang, J. Yu, C. Hu, H. J. Jiang, Finite-time synchronization of memristive neural networks with fractional-order, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(6) (2021), 3739-3750.
[41] W. R. Zhao, Global exponential stability analysis of Cohen-Grossberg neural networks with delays, Communications in Nonlinear Science and Numerical Simulation, 13(5) (2008), 847-856.
[42] Y. H. Zhou, C. D. Li, L. Chen, T. W. Huang, Global exponential stability of memristive Cohen-Grossberg neural networks with mixed delays and impulse time window, Neurocomputing, 275 (2018), 2384-2391.
[43] Q. X. Zhu, J. D. Cao, Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Transactions on Neural Networks, 21(8) (2010), 1314-1325.
[44] Q. X. Zhu, X. D. Li, Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks, Fuzzy Sets and Systems, 203 (2012), 74-94. | ||
آمار تعداد مشاهده مقاله: 366 تعداد دریافت فایل اصل مقاله: 394 |