تعداد نشریات | 31 |
تعداد شمارهها | 706 |
تعداد مقالات | 6,893 |
تعداد مشاهده مقاله | 11,274,539 |
تعداد دریافت فایل اصل مقاله | 7,576,574 |
On some categories of triangular norms on the real unit interval | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 13، دوره 19، شماره 5، آذر و دی 2022، صفحه 183-198 اصل مقاله (476.06 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2022.7164 | ||
نویسنده | ||
P. Helbin* | ||
Institute of Mathematics, University of Silesia in Katowice, Katowice, Poland | ||
چکیده | ||
In this work, we introduce some categories of triangular norms in which truth values belong to the real unit interval, where arrows are a generalization of automorphisms. We investigate the existence of products, coproducts, equalizers and coequalizers in these categories. Moreover, we show that Theorems 2.29, 2.30 in \cite{Yousefi_Mashinchi_Mesiar_2021} are false by providing counterexamples. | ||
کلیدواژهها | ||
Categories of t-norms؛ T-norm؛ fuzzy implication؛ R-implications | ||
مراجع | ||
[1] J. Adámek, H. Herrlich, G. E. Strecker, Abstract and concrete categories, The Joy of Cats, John Wiley and Sons, New York, 1990.
[2] S. Awodey, Category theory, Oxford Logic Guides 49. Oxford University Pres, 2006.
[3] M. Baczyński, B. Jayaram, Fuzzy implications, volume 231 of Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg, 2008.
[4] M. Barr, Fuzzy set theory and topos theory, Canadian Mathematical Bulletin, 29 (1986), 501-508.
[5] B. Bedregal, R. Bedregal, H. Santos, Bounded lattice t-norms as an interval category, In D. Leivant and R. de Queiroz, editors, Logic, Language, Information and Computation, volume 4576, pages 26-37. Springer-Verlag Berlin Heidelberg, 2007.
[6] A. H. Clifford, Naturally totally ordered commutative semigroups, American Journal of Mathematics, 76 (1954), 631-646.
[7] S. Dautović, M. Zekić, Fuzzy logic and enriched categories, Iranian Journal of Fuzzy Systems, 18(3) (2021), 1-11.
[8] B. A. Davey, H. A. Priestley, Introduction to lattices and order, Cambridge University Press, 2002.
[9] J. Fodor, M. Roubens, Fuzzy preference modelling and multicriteria decision support, Kluwer Academic Publishers, Dordrecht, 1994.
[10] J. Goguen, Concept representation in natural and artificial languages: Axioms, extensions and applications for fuzzy sets, International Journal of Man-Machine Studies, 6 (1974), 513-561.
[11] M. Haddadi, Fuzzy acts over fuzzy semigroups and sheaves, Iranian Journal of Fuzzy Systems, 11(14) (2014), 61-73.
[12] B. Jayaram, M. Baczyński, R. Mesiar, R-implications and the exchange principle: The case of border continuous t-norms, Fuzzy Sets and Systems, 224 (2013), 93-105.
[13] S. Jenei, Structure of left-continuous triangular norms with strong induced negations, (I) rotation construction, Journal of Applied Non-Classical Logics, 10 (2000), 83-92.
[14] S. Jenei, A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy Sets and Systems, 126 (2002), 1999-2005.
[15] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer, Dordrecht, 2000.
[16] E. P. Klement, R. Mesiar, E. Pap, Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford, Semigroup Forum, 65 (2002), 71-82.
[17] M. Kuczma, Functional equations in a single variable, PWN - Polish Scientific Publishers, Warszawa, 1968.
[18] K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences USA, 28 (1942), 535-537.
[19] J. Močkoř, Powerset operators of extensional fuzzy sets, Iranian Journal of Fuzzy Systems, 15(2) (2018), 143-163.
[20] B. Schweizer, A. Sklar, Associative functions and statistical triangle inequalities, Publicationes Mathematicae Debrecen, 8 (1961), 169-186.
[21] A. Youse, M. Mashinchi, Categories of fuzzy implications and R-implications on bounded lattices, In 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), IEEE 2018, (2018), 40-42.
[22] A. Youse, M. Mashinchi, R. Mesiar, Some notes on the category of fuzzy implications on bounded lattices, Kybernetika, 57 (2021), 332-351.
[23] Y. Yu, J. N. Mordeson, S. C. Cheng, Elements of L-algebra, Lecture Notes in Fuzzy Mathematics and Computer Science. Creighton University, Omaha, 1994. | ||
آمار تعداد مشاهده مقاله: 309 تعداد دریافت فایل اصل مقاله: 332 |