
تعداد نشریات | 33 |
تعداد شمارهها | 771 |
تعداد مقالات | 7,477 |
تعداد مشاهده مقاله | 12,474,488 |
تعداد دریافت فایل اصل مقاله | 8,478,617 |
A Numerical Investigation of SiC Production from SiO2 and Carbon in an Industrial Scale | ||
Chemical Process Design | ||
دوره 1، شماره 1، شهریور 2022، صفحه 43-58 اصل مقاله (1.75 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22111/cpd.2022.43514.1008 | ||
نویسندگان | ||
Bahador Abolpour* 1؛ Rahim Shamsoddini2 | ||
1Sirjan, Iran | ||
2Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran | ||
چکیده | ||
In the present study, a one-dimensional unsteady-state model is developed to investigate an industrial Acheson reactor for producing SiC. The mechanisms of the SiO2 melting and converting to SiC are investigated using the experimental data of previous works. Additionally, the obtained models are utilized in the developed mathematical model. The finite difference method is used for the simulation of the developed model. The accuracy of the presented model is validated by empirical data. The complete discussions of the reaction progress, melting process, variations of the bed, and also the temperature inside the bed are presented. Attending to the importance of the existing competition between the melting of SiO2 and converting to SiC, these mechanisms are investigated using the presented data in previous relevant studies and the obtained models are utilized in the developed mathematical model. The model predictions show that the final produced cylinder of SiC at the center line of the reactor occupies 8.05% of the reactor diameter and has 8.16% weight loss during the production process. | ||
کلیدواژهها | ||
Modeling؛ Acheson؛ SiO2؛ Carbon؛ SiC | ||
مراجع | ||
[1] Gupta, G.S., Vasanth Kumar, P., Rudolph, V.R. and Gupta, M., 2001. Heat-transfer model for the acheson process. Metallurgical and Materials Transactions A, 32(6), 1301-1308. https://doi.org/10.1007/s11661-001-0220-9
[2] Carbide, N., 1997. Boride materials-synthesis and processing, edited by Aw Weimer. Chapman and Hall, London.
[3] Acheson, E.G., 1893. Carborundum: Its history, manufacture and uses. Journal of the Franklin Institute, 136(3), 194-203. https://doi.org/10.1016/0016-0032(93)90311-H
[4] Searcy, A.W. 1963. High-temperature reactions. Survey of Progress in Chemistry, 1, 35-79. https://doi.org/10.1016/B978-1-4832-0003-3.50007-7
[5] Węgrzyn, J., 2015. Comparison of mass loss rate in reaction of silica with carbon from different investigation results. Metalurgija, 54(3), 579-582.
[6] Weimer, A.W., Nilsen, K.J., Cochran, G.A. and Roach, R.P., 1993. Kinetics of carbothermal reduction synthesis of beta silicon carbide. AIChE Journal, 39(3), 493-503. https://doi.org/10.1002/aic.690390311
[7] Kennedy, P. and North, B., 1983. Proceedings of the British Ceramic Society. Stoke-on-Trent: British Ceramic Society.
[8] Kevorkijan, V.M., Komac, M. and Kolar, D., 1989. Ceramic powder processing science. Koln: Deutsche Keramische Gesellschaft, 327-333.
[9] Kikuchi, T., Kurosawa, T. and Yagihashi, T., 1969. Carbothermic Reduction of Silica (Studies on the Production of Crude Aluminium Alloy by the Direct Reduction of Aluminous Ores (III). Transactions of the Japan Institute of Metals, 10(2), 140-146. https://doi.org/10.2320/matertrans1960.10.140
[10] Shimoo, T. and Mizutaki, F., 1989. Effect of particle-size of carbon on the reduction rate of powdered SiO2-C mixtures., Journal of the Japan Institute of Metals, 53(8), 838-839. https://doi.org/10.2320/jinstmet1952.53.8_838
[11] Ono, K. and Kurachi, Y., 1991. Kinetic studies on β-SiC formation from homogeneous precursors. Journal of materials science, 26(2), 388-392. https://doi.org/10.1007/BF00576531
[12] Van Dijen, F.K. and Metselaar, R., 1991. The chemistry of the carbothermal synthesis of β-SiC: Reaction mechanism, reaction rate and grain growth. Journal of the European Ceramic Society, 7(3), 177-184. https://doi.org/10.1016/0955-2219(91)90035-X
[13] Krishnarao, R.V. and Mahajan, Y.R., 1996. Formation of SiC whiskers from raw rice husks in argon atmosphere. Ceramics international, 22(5), 353-358. https://doi.org/10.1016/0272-8842(95)00084-4
[14] Shimoo, T., Mizutaki, F., Ando, S. and Kimura, H., 1988. Mechanism of formation of SiC by reduction of SiO with graphite and CO. Nippon Kinzoku Gakkaishi;(Japan), 52(3).
[15] Kumar, P.V. and Gupta, G.S., 2002. Study of formation of silicon carbide in the Acheson process. Steel research, 73(2), 31-38. https://doi.org/10.1002/srin.200200170
[16] Nagamori, M., Leblanc, R. and Courtemanche, R., 1993. Power consumption in the Acheson process for producing SiC. Developments and Applications of Ceramics and New Metal Alloys, 301-312.
[17] Derevyanko, I.V. and Zhadanos, A.V., 2010. Mathematical modeling of heat power processes of silicium carbide production in acheson furnace. Metallurgical and Mining Industry, 2(5), 331.
[18] Ainslie, N.G., Mackenzie, J.D. and Turnbull, D., 1961. Melting kinetics of quartz and cristobalite. The Journal of Physical Chemistry, 65(10), 1718-1724. https://doi.org/10.1021/j100827a012
[19] Roine, A., 2006. HSC 6.0 Chemistry. Chemical reactions and Equilibrium software with extensive thermochemical database and Flowsheet simulation. Pori: Outokumpu research Oy.
[20] Filsinger, D.H. and Bourrie, D.B., 1990. Silica to silicon: key carbothermic reactions and kinetics. Journal of the American Ceramic Society, 73(6), 1726-1732. https://doi.org/10.1111/j.1151-2916.1990.tb09820.x
[21] Abolpour, B., Afsahi, M.M. and Azizkarimi, M., 2018. Reduction kinetics of magnetite concentrate particles by carbon monoxide. Mineral Processing and Extractive Metallurgy, 127(1), 29-39. https://doi.org/10.1080/03719553.2016.1277
[22] Abolpour, B., Afsahi, M.M. and Azizkarimi, M., 2021. Hydrogen reduction of magnetite concentrate particles. Mineral Processing and Extractive Metallurgy, 130(1), 59-72. https://doi.org/10.1080/25726641.2018.1521576
[23] Nomura, Y., Nakagawa, H., Maeda, T., Nishioka, K. and Shimizu, M., 2005. Rapid reduction of fine iron ore transported with CH4 gas. Tetsu-to-hagane, 91(6), 521-527. https://doi.org/10.2355/tetsutohagane1955.91.6_521
[24] Perry, R.H., Green, D.W. and Maloney, J.O., 1997. Perry’s handbook of chemical engineering. Perry’s Handbook of Chemical Engineering.
[25] Kaye, G.W.C. and Laby, T.H., 1966. Tables of physical and chemical constants and some mathematical functions.
[26] Touloukian, Y.S. and Makita, T., 1970. Thermophysical properties of matter-the TPRC data series. volume 6. specific heat-nonmetallic liquids and gases. Thermophysical and electronic properties information analysis center lafayette in.
[27] Harris, G.L., 1995. Properties of silicon carbide, INSPEC. The Institution of Electrical Engineers, London, 5.
[28] Jiang, S., Horn, T.J. and Dhir, V.K., 2000. Numerical analysis of a radiant heat flux calibration system. International journal of thermophysics, 21(4), 941-963. https://doi.org/10.1023/A:1006622526578
[29] Holman, J.P., 1997. Heat transfer, 8th Edition. New York.
[30] Abolpour, B., 2021, Modeling of oxidation of UO2 pellets. Annals of Nuclear Energy, 151, 107955. https://doi.org/10.1016/j.anucene.2020.107955
[31] Abolpour, B. and R. Shamsoddini, 2020, Mechanism of reaction of silica and carbon for producing silicon carbide. Progress in Reaction Kinetics and Mechanism, 45. https://doi.org/10.1177/1468678319891416
[32] Gupta, G.S., Raj, P. and Tiwari, K., 2019. An Analysis of Heat Distribution in the Production of SiC Process. Procedia Manufacturing, 30, 64-70. https://doi.org/10.1016/j.promfg.2019.02.010
[33] Alweendo, S.T., Johnson, O.T., Shongwe, M.B., Kavishe, F.P. and Borode, J.O., 2019. Synthesis, optimization and characterization of silicon carbide (SiC) from rice husk. Procedia Manufacturing, 35, 962-967. https://doi.org/10.1016/j.promfg.2019.06.042
[34] Feng, D., Qin, Z., Ren, Q., Sun, S., Xia, Q., Ru, H., Wang, W., Ren, S. and Zhang, C., 2022. Occurrence forms of major impurity elements in silicon carbide. Ceramics International, 48(1), 205-211. https://doi.org/10.1016/j.ceramint.2021.09.095
[35] Matizamhuka, W.R., 2019. Gas transport mechanisms and the behaviour of impurities in the Acheson furnace for the production of silicon carbide. Heliyon, 5(4), e01535. https://doi.org/10.1016/j.heliyon.2019.e01535
[36] Raj, P. and Gupta, G.S., 2020. Temperature measurements in a laboratory scale furnace for manufacturing of silicon carbide through Acheson process. Measurement, 151, 107131. https://doi.org/10.1016/j.measurement.2019.107131
[37] Raj, P., Gupta, G.S. and Rudolph, V., 2020. Silicon carbide formation by carbothermal reduction in the Acheson process: A hot model study. Thermochimica Acta, 687, 178577. https://doi.org/10.1016/j.tca.2020.178577
[38] Hossain, S.T., Johra, F.T. and Jung, W.G., 2018. Fabrication of silicon carbide from recycled silicon wafer cutting sludge and its purification. Applied Sciences, 8(10), 1841. https://doi.org/10.3390/app8101841
[39] Rao, M.P.L.N., Gupta, G.S., Manjunath, P., Kumar, S., Suri, A.K., Krishnamurthy, N., Subramanian, C., 2009. Core temperature measurement in carbothermal reduction processes. Thermochimica Acta, 482(1-2), 66-71. https://doi.org/10.1016/j.tca.2008.10.016 | ||
آمار تعداد مشاهده مقاله: 242 تعداد دریافت فایل اصل مقاله: 280 |