تعداد نشریات | 27 |
تعداد شمارهها | 612 |
تعداد مقالات | 6,232 |
تعداد مشاهده مقاله | 9,353,197 |
تعداد دریافت فایل اصل مقاله | 6,105,042 |
Forward and backward fuzzy rule base interpolation using fuzzy geometry | ||
Iranian Journal of Fuzzy Systems | ||
دوره 20، شماره 3، مرداد و شهریور 2023، صفحه 127-146 اصل مقاله (344.38 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.7643 | ||
نویسندگان | ||
S. Das* 1؛ D. Chakraborty2؛ L. T. Koczy3 | ||
1School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore | ||
2Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India | ||
3Department of Information Technology, Szechenyi Istvan University, Gyor, Hungary | ||
چکیده | ||
Fuzzy rule interpolation (FRI) predicts an accountable outcome of a possible course of action in sparse fuzzy rule base system (FRBS). The geometry based linear fuzzy rule interpolation (GLFRI) is extended for multi-dimensional fuzzy rule base interpolation. Expansion/contraction (EC) of triangular, trapezoidal and complex polygonal fuzzy sets has been also proposed which enables the proposed FRI method to incorporate with fuzzy rules which include triangular, trapezoidal, hexagonal or complex fuzzy sets. The study further extends to introduce the process of backward rule base interpolation. It has been shown that the scale and move transformation-based FRI method can yield a non-convex fuzzy consequent which can be avoided by using the proposed method. The proposed method performs better without any risk of obtaining non-convex fuzzy consequent. The efficiency of proposed forward and backward FRI methods is projected with several numerical examples. A detailed comparison of EC transformation with scale and move transformation is also presented here. | ||
کلیدواژهها | ||
Inverse rule base interpolation؛ scale and move transformation؛ transformation of fuzzy point؛ translation of fuzzy number؛ multi-dimensional rule base interpolation | ||
مراجع | ||
[1] P. Baranyi, I. M. Bavelaar, R. Bubuˇska, L. T. K´oczy, A. Titli, H. B. Verbruggen, A method to invert a linguistic fuzzy model, International Journal of Systems Science, 29(7) (1998), 711-721. [2] P. Baranyi, T. D. Gedeon, L. T. K´oczy, A general interpolation technique in fuzzy rule bases with arbitrary membership functions, In Systems, Man, and Cybernetics, 1996, IEEE International Conference on, 1 (1996), 510-515.
[3] P. Baranyi, L. T. K´oczy, A general and specialised solid cutting method for fuzzy rule interpolation, Journal BUSEFAL, URA-CNRS, Universit´e Paul Sabatier, (1996), 13-22.
[4] P. Baranyi, D. Tikk, T. D. Gedeon, L. T. K´oczy, Alpha-cut interpolation technique in the space of regular conclusion, 9th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’00), San Antonio, Texas, USA, 7-10 May, 2000, 478-482. ISBN: 0-7803-5877-5. [5] R. E. Bellman, E. Richard, L. Asker Zadeh, Decision-making in a fuzzy environment, Management Science, 17(4) (1970), B-141. [6] S. Blaˇzic, I. Skrjanc, ˇ Design and stability analysis of fuzzy model-based predictive control-a case study, Journal of Intelligent and Robotic Systems, 49(3) (2007), 279-292. [7] D. Chakraborty, S. Das, Fuzzy geometry: Perpendicular to fuzzy line segment, Information Sciences, 468 (2018), 213-225. [8] T. Chen, C. Shang, J. Yang, F. Li, Q. Shen, A new approach for transformation-based fuzzy rule interpolation, IEEE Transactions on Fuzzy Systems, 28(12) (2019), 3330-3344. [9] S. Das, D. Chakraborty, Conceptualizing fuzzy line as a collection of fuzzy points, Information Sciences, 598 (2022), 86-100. [10] S. Das, D. Chakraborty, Graphical method to solve fuzzy linear programming, S´adhan´a, 47(4) (2022), 259.
[11] S. Das, D. Chakraborty, L. T. K´oczy, Linear fuzzy rule base interpolation using fuzzy geometry, International Journal of Approximate Reasoning, 112 (2019), 105-118. [12] S. Das, D. Chakraborty, L. T. K´oczy, Process of inversion in fuzzy interpolation model using fuzzy geometry, In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (2020), 1-8. [13] D. Dubois, Gradual rules and the approximation of control laws, Theoretical Aspects of Fuzzy Control, (1995), 147-181. [14] D. Dubois, H. Prade, Gradual inference rules in approximate reasoning, Information Sciences, 61(1-2) (1992), 103-122. [15] S. Jin, R. Diao, C. Quek, Q. Shen, Backward fuzzy rule interpolation, IEEE Transactions on Fuzzy Systems, 22(6) (2014), 1682-1698. [16] S. Jin, R. Diao, Q. Shen, α-cut-based backward fuzzy interpolation, In 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing, (2014), 211-218. [17] S. Jin, Q. Shen, J. Peng, Backward fuzzy rule interpolation, Springer, 2019.
[18] Z. C. Johany´ak, S. Kov´acs, Fuzzy rule interpolation by the least squares method, In 7th International Symposium of Hungarian Researchers on Computational Intelligence (HUCI 2006), (2006), 495-506. [19] Z. C. Johany´ak, S. Kov´acs, Fuzzy rule interpolation based on polar cuts, In Computational Intelligence, Theory and Applications, Springer, Berlin, Heidelberg, (2006), 499-511. [20] Z. C. Johany´ak, S. Kov´acs, Polar-cut based fuzzy model for petrophysical properties prediction, Scientific Bulletin of “Politehnica” University of Timisoara, Romania, Transactions on Automatic Control and Computer Science, 57(67) (2008), 195-200. [21] D. Hl´adek, J. Vascak, P. Sincak, Hierarchical fuzzy inference system for robotic pursuit evasion task, In Applied Machine Intelligence and Informatics, 2008. SAMI 2008. 6th International Symposium on, (2008), 273-277. [22] Z. Huang, Q. Shen, Scale and move transformation-based fuzzy interpolative reasoning: A revisit, In 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), 2 (2004), 623-628. [23] Z. Huang, Q. Shen, Fuzzy interpolative reasoning via scale and move transformations, IEEE Transactions on Fuzzy Systems, 14(2) (2006), 340-359. [24] Z. Huang, Q. Shen, Fuzzy interpolation and extrapolation: A practical approach, IEEE Transactions on Fuzzy Systems, 16(1) (2008), 13-28. [25] L. K´oczy, K. Hirota, Approximate reasoning by linear rule interpolation and general approximation, International Journal of Approximate Reasoning, 9(3) (1993), 197-225. [26] L. T. K´oczy, S. Kov´acs, On the preservation of the convexity and piecewise linearity in linear fuzzy rule interpolation, Tokyo Institute of Technology, Yokohama, Japan, Technical Reports TR, (1993), 93-94. [27] L. T. K´oczy, S. Kov´acs, Shape of the fuzzy conclusion generated by linear interpolation in trapezoidal fuzzy rule bases, In Proceedings of the 2nd European Congress on Intelligent Techniques and Soft Computing, Aachen, (1994), 1666-1670. [28] L. T. K´oczy, S. Kov´acs, The convexity and piecewise linearity of the fuzzy conclusion generated by linear fuzzy rule interpolation, Journal of BUSEFAL, 60 (1994), 23-29. [29] S. Kov´acs, L. T. K´oczy, Application of interpolation-based fuzzy logic reasoning in behaviour-based control structures, In Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on, 3 (2004), 1543-1548. [30] F. Li, C. Shang, Y. Li, Q. Shen, Interpretable mammographic mass classification with fuzzy interpolative reasoning, Knowledge-Based Systems, 191 (2020), 105279. [31] F. Li, C. Shang, Y. Li, J. Yang, Q. Shen, Approximate reasoning with fuzzy rule interpolation: Background and recent advances, Artificial Intelligence Review, 54(6) (2021), 4543-4590. [32] H. Lv, F. Li, C. Shang, Q. Shen, W-Infer-polation: Approximate reasoning via integrating weighted fuzzy rule inference and interpolation, Knowledge-Based Systems, (2022), 109995. [33] E. H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 7(1) (1975), 1-13. [34] J. M. Mendel, P. P. Bonissone, Critical thinking about explainable AI (XAI) for rule-based fuzzy systems, IEEE Transactions on Fuzzy Systems, 29(12) (2021), 3579-3593. [35] M. Mukaidono, L. Ding, Z. Shen, Approximate reasoning based on revision principle, In Proc. NAFIPS’90, 1 (1990), 94-97. [36] R. E. Precup, S. Doboli, S. Preitl, Stability analysis and development of a class of fuzzy control systems, Engineering Applications of Artificial Intelligence, 13(3) (2000), 237-247. [37] Z. Saghian, A. Esfahanipour, B. Karimi, A novel Kumaraswamy interval type-2 TSK fuzzy logic system for subway passenger demand prediction, Iranian Journal of Fuzzy Systems, 19(3) (2022), 69-87. [38] Z. Shen, L. Ding, M. Mukaidono, Methods of revision principle, Proc. 5th IFSA World Congress, (1993), 246-249.
[39] M. Sugeno, T. Takagi, Multi-dimensional fuzzy reasoning, Fuzzy Sets and Systems, 9(1-3) (1983), 313-325.
[40] Y. Tsukamoto, An approach to fuzzy reasoning method, Advances in Fuzzy Set Theory and Applications, 137 (1979), 149. [41] L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics, 1 (1973), 28-44.
[42] P. Zhang, Q. Shen, Dynamic TSK systems supported by fuzzy rule interpolation: An initial investigation, In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (2020), 1-7. [43] M. Zhou, C. Shang, G. Li, L. Shen, N. Naik, S. Jin, J. Peng, Q. Shen, Transformation-based fuzzy rule interpolation with mahalanobis distance measures supported by choquet integral, IEEE Transactions on Fuzzy Systems, (2022), 1-15. | ||
آمار تعداد مشاهده مقاله: 33 تعداد دریافت فایل اصل مقاله: 56 |