تعداد نشریات | 31 |
تعداد شمارهها | 698 |
تعداد مقالات | 6,840 |
تعداد مشاهده مقاله | 11,121,594 |
تعداد دریافت فایل اصل مقاله | 7,502,110 |
( 2301-7844 ) Characterizing three classes of idempotent uninorms on a bounded lattice | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 20، شماره 5، آذر و دی 2023، صفحه 109-120 اصل مقاله (181.39 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.7685 | ||
نویسندگان | ||
Y. Su* 1، 2، 3؛ Z. Wang4؛ A. Mesiarova-Zemankova5، 6؛ R. Mesiar6، 7 | ||
1School of Mathematics Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China | ||
2Jiangsu Industrial Intelligent and Low-carbon Technology Engineering Center, Suzhou, Jiangsu 215009, China | ||
3Suzhou Key Laboratory of Intelligent Low-carton Technology Application, Suzhou, Jiangsu 215009, China | ||
4School of Mathematics and Statistics, Yancheng Teachers University, Jiangsu 224002, China | ||
5Mathematical Institute, Slovak Academy of Sciences, \v Stef\' anikova 49, SK- 814 73 Bratislava, Slovakia | ||
6Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, CE IT4Innovations, 30. dubna 22, 701 03 Ostrava, Czech Republic | ||
7Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology Bratislava, Radlinsk\' eho 11, 810 05 Bratislava, Slovakia | ||
چکیده | ||
This study presents characterizations of three classes of idempotent uninorms on a bounded lattice by the orders of their associated meet-semilattices. The first one is the class of internal uninorms, the second one is the class of idempotent uninorms defined on a lattice in which all elements are comparable with the corresponding neutral element and the third one is the class of idempotent uninorms defined on a lattice in which a single point is incomparable with the corresponding neutral element. | ||
کلیدواژهها | ||
Bounded lattice؛ internal uninorm؛ idempotent uninorm؛ partial order | ||
مراجع | ||
[1] G. Birkho , Lattice theory, American Mathematical Society Colloquium Publications, Rhode Island, 1973.
[2] G. D. Cayli, P. Drygas, Some properties of idempotent uninorms on a special class of bounded lattices, Information Sciences, 422 (2018), 352-363.
[3] G. D. Cayli, F. Karacal, R. Mesiar, On a new class of uninorms on bounded lattices, Information Sciences, 367-368 (2016), 221-231.
[4] G. D. Cayli, F. Karacal, R. Mesiar, On internal and locally internal uninorms on bounded lattices, International Journal of General Systems, 48(3) (2019), 235-259.
[5] B. A. Davey, H. A. Priestley, Introduction to lattices and order, Second Edition, Cambridge University Press, Cambridge, 2002.
[6] B. De Baets, Idempotent uninorms, European Journal of Operational Research, 118 (1999), 631-642.
[7] J. Devillet, B. Teheux, Associative, idempotent, symmetric, and order-preserving operations on chains, Order, 37 (2020), 45-58.
[8] F. Karacal, R. Mesiar, Uninorms on bounded lattices, Fuzzy Sets and Systems, 261 (2015), 33-43.
[9] J. Martin, G. Mayor, J. Torrens, On locally internal monotonic operations, Fuzzy Sets and Systems, 137 (2003), 27-42.
[10] A. Mesiarova-Zemankova, A note on decomposition of idempotent uninorms into an ordinal sum of singleton semigroups, Fuzzy Sets and Systems, 299 (2016), 140-145.
[11] A. Mesiarova-Zemankova, Natural partial order induced by a commutative, associative and idempotent function, Information Sciences, 545 (2021), 499-512.
[12] A. Mesiarova-Zemankova, R. Mesiar, Y. Su, Z. Wang, Idempotent uninorms on bounded lattices with at most a single point incomparable with the neutral element, Fuzzy Sets and Systems, Submitted.
[13] G. Metcalfe, F. Montagna, Substructural fuzzy logics, The Journal of Symbolic Logic, 72 (2007), 834-864.
[14] Y. Ouyang, H. Zhang, Z. Wang, B. De Baets, Idempotent uninorms on a complete chain, Fuzzy Sets and Systems, 448 (2022), 107-126.
[15] D. Ruiz-Aguilera, J. Torrens, B. De Baets, J. Fodor, Some remarks on the characterization of idempotent uninorms, In: E. Hullermeier, R. Kruse, F. Ho mann, (eds.) Computational Intelligence for Knowledge-Based Systems Design, Proc. 13th IPMU 2010 Conference, LNAI 6178, Springer-Verlag, Berlin, Heidelberg, (2010), 425-434.
[16] R. R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems, 80(1) (1996), 111-120. | ||
آمار تعداد مشاهده مقاله: 165 تعداد دریافت فایل اصل مقاله: 235 |