
تعداد نشریات | 33 |
تعداد شمارهها | 772 |
تعداد مقالات | 7,486 |
تعداد مشاهده مقاله | 12,490,713 |
تعداد دریافت فایل اصل مقاله | 8,482,305 |
A Comprehensive Review of Digital Rock Physics: From Tomographic Images to Pore Network Modeling | ||
Chemical Process Design | ||
دوره 2، شماره 1، شهریور 2023، صفحه 6-31 اصل مقاله (1.67 M) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.22111/cpd.2023.44680.1018 | ||
نویسندگان | ||
Hassan Behbahani1؛ Reza Azin* 2؛ Shahriar Osfouri1 | ||
1Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran | ||
2Department of Petroleum Engineering, Faculty of Pettoleum, Gas and Petrochemical Engineering, Persian Gulf University | ||
چکیده | ||
The growth of hydrocarbon resources dramatically influences the energy market's future. Digital Rock Physics (DRP) is a scientifically accepted approach for evaluating reservoirs' rock qualities. In theory, knowing the geographical distribution of the linked pore space enables one to anticipate the characteristics of a rock sample. But upscaling predictions systematically hasn't been possible yet due to restrictions on unique microscopic resolution and approximated measurements. Getting information about the structure through tomographic pictures of porous materials is an essential part of porous media investigation. The ability to extract pore networks is especially beneficial because it allows for pore network modeling simulation studies, which can also be helpful for various tasks ranging from modeling transportation characteristics to predicting the effectiveness of the whole equipment. This paper deals with a comprehensive overview of the importance, steps and methods of simulating the porous medium using pore network modeling and all their necessary prerequisites. For this purpose, instead of using continuum-based modeling it has been tried to enter in the pore scale and review the steps of modeling that happen in that according to image-based methods mentioned by previous researchers, which are very useful for modeling complex geological materials. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Pore Network Modeling؛ Digital Rock Physics؛ Porous Media؛ Reconstruction Algorithms؛ Open PNM | ||
مراجع | ||
[1] Sahimi, M., 1993. Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing, Reviews of Modern Physics, 65(4), 1393. ttps://doi.org/10.1103/RevModPhys.65.1393
[2] Trogadas, P., Ramani, V., Strasser, P., Fuller, T. F., Coppens, M. O., 2016. Hierarchically structured nanomaterials for electrochemical energy conversion, Angewandte Chemie International Edition, 55(1), 122-148. https://doi.org/10.1002/anie.201506394
[3] Jackson, E. A., Hillmyer, M. A., 2010. Nanoporous membranes derived from block copolymers: from drug delivery to water filtration, ACS Nano, 4(7), 3548-3553. https://doi.org/10.1021/nn1014006
[4] De Jong, J., Lammertink, R. G., Wessling, M., 2006. Membranes and microfluidics: a review, Lab on a Chip, 6(9), 1125-1139. https://doi.org/10.1039/B603275C
[5] Velev, O. D., Lenhoff, A. M., 2000. Colloidal crystals as templates for porous materials, Current Opinion in Colloid & Interface Science, 5(1-2), 56-63. https://doi.org/10.1016/S1359-0294(00)00039-X
[6] Wildenschild, D., Sheppard, A. P., 2013. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems, Advances in Water Resources, 51, 217-246. https://doi.org/10.1016/j.advwatres.2012.07.018
[7] Andisheh-Tadbir, M., Orfino, F. P., Kjeang, E., 2016. Three-dimensional phase segregation of micro-porous layers for fuel cells by nano-scale X-ray computed tomography, Journal of Power Sources, 310, 61-69. https://doi.org/10.1016/j.jpowsour.2016.02.001
[8] Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X., 2013. Digital rock physics benchmarks—Part I: Imaging and segmentation, Computers & Geosciences, 50, 25-32. https://doi.org/10.1016/j.cageo.2012.09.005
[9] Chatzis, I., Dullien, F. A., 1977. Modelling pore structure by 2-D and 3-D networks with application to sandstones, Journal of Canadian Petroleum Technology, 16(01). https://doi.org/10.2118/77-01-09
[10] Mohanty, K. K., 1981. Fluids in porous media: two-phase distribution and flow, University of Minnesota.
[11] Celia, M. A., Reeves, P. C., Ferrand, L. A., 1995. Recent advances in pore scale models for multiphase flow in porous media, Reviews of Geophysics, 33(S2), 1049-1057. https://doi.org/ 10.1029/95RG00248
[12] Blunt, M. J., 2001. Flow in porous media—pore-network models and multiphase flow, Current Opinion in Colloid & Interface Science, 6(3), 197-207. https://doi.org/10.1016/S1359-0294(01)00084-X
[13] Primkulov, B.K., Talman, S., Khaleghi, K., Rangriz Shokri, A., Chalaturnyk, R., Zhao, B., MacMinn, C.W., Juanes, R., 2018. Quasistatic fluid-fluid displacement in porous media: Invasion-percolation through a wetting transition, Physical Review Fluids, 3(10), 104001. https://doi.org/10.1103/PhysRevFluids.3.104001
[14] Dong, H., 2007. Micro-CT Imaging and Pore Network Extraction, PhD dissertation, Imperial College, London.
[15] Sahimi, M., 2011. Flow and transport in porous media and fractured rock: from classical methods to modern approaches, John Wiley & Sons.
[16] Bryant, S. L., King, P. R., Mellor, D. W., 1993. Network model evaluation of permeability and spatial correlation in a real random sphere packing, Transport in Porous Media, 11(1), 53-70. https://doi.org/10.1007/BF00614635
[17] Bryant, S. L., Mellor, D. W., Cade, C. A., 1993. Physically representative network models of transport in porous media, AIChE Journal, 39(3), 387-396. https://doi.org/10.1002/aic.690390303
[18] Bryant, S., Blunt, M., 1992. Prediction of relative permeability in simple porous media, Physical Review A, 46(4), 2004. https://doi.org/10.1103/PhysRevA.46.2004
[19] Øren, P.-E., Bakke, S., 2002. Process based reconstruction of sandstones and prediction of transport properties, Transport in Porous Media, 46(2), 311-343. https://doi.org/10.1023/A:1015031122338
[20] Øren, P.-E., Bakke, S., Arntzen, O. J., 1998. Extending predictive capabilities to network models, SPE Journal, 3(04), 324-336. https://doi.org/10.2118/52052-PA
[21] Manchanda, R., Olson, J. E., Sharma, M. M., 2012. Permeability anisotropy and dilation due to shear failure in poorly consolidated sands, in SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA. https://doi.org/10.2118/152432-MS
[22] Liu, Y., Zhou, X., You, Z., Yao, S., Gong, F., Wang, H., 2017. Discrete element modeling of realistic particle shapes in stone-based mixtures through MATLAB-based imaging process, Construction and Building Materials, 143, 169-178. https://doi.org/10.1016/j.conbuildmat.2017.03.037
[23] Raziperchikolaee, S., Alvarado, V., Yin, S., 2014. Microscale modeling of fluid flow‐geomechanics‐seismicity: Relationship between permeability and seismic source response in deformed rock joints, Journal of Geophysical Research: Solid Earth, 119(9), 6958-6975. https://doi.org/10.1002/2013JB010758
[24] Yang, Z., Juanes, R., 2018. Two sides of a fault: Grain-scale analysis of pore pressure control on fault slip, Physical Review E, 97(2), 022906. https://doi.org/10.1103/PhysRevE.97.022906
[25] Bhattad, P., Willson, C. S., Thompson, K. E., 2011. Effect of network structure on characterization and flow modeling using X-ray micro-tomography images of granular and fibrous porous media, Transport in Porous Media, 90(2), 363-391. https://doi.org/10.1007/s11242-011-9789-7
[26] Blunt, M. J., 2017. Multiphase flow in permeable media: A pore-scale perspective, Cambridge University Press.
[27] Sadeghnejad, S., Gostick, J., 2020. Multiscale reconstruction of vuggy carbonates by pore-network modeling and image-based technique, SPE Journal, 25(01), 253-267. https://doi.org/10.2118/198902-PA
[28] Sun, Q., Zhang, N., Fadlelmula, M., Wang, Y., 2018. Structural regeneration of fracture-vug network in naturally fractured vuggy reservoirs, Journal of Petroleum Science and Engineering, 165, 28-41. https://doi.org/10.1016/j.petrol.2017.11.030
[29] Beg, M. S., 2022. Multiscale Pore Network Modeling of Hierarchical Media with Applications to Improved Oil and Gas Recovery, University of Waterloo.
[30] Al-Kharusi, A. S., Blunt, M. J., 2007. Network extraction from sandstone and carbonate pore space images, Journal of Petroleum Science and Engineering, 56(4), 219-231. https://doi.org/10.1016/j.petrol.2006.09.003
[31] Prodanović, M., Mehmani, A., Sheppard, A. P., 2015. Image-based multiscale network modelling of microporosity in carbonates, Geological Society, London, Special Publications, 406(1), 95-113. https://doi.org/10.1144/SP406.9
[32] Lindquist, W. B., Lee, S. M., Coker, D. A., Jones, K. W., Spanne, P., 1996. Medial axis analysis of void structure in three-dimensional tomographic images of porous media, Journal of Geophysical Research: Solid Earth, 101(B4), 8297-8310. https://doi.org/10.1029/95JB03039
[33] Sarker, M., Siddiqui, S., 2009. Advances in micro-CT based evaluation of reservoir rocks, in SPE Saudi Arabia Section Technical Symposium, Al-Khobar, Saudi Arabia. https://doi.org/10.2118/126039-MS
[34] Silin, D., Patzek, T., 2006. Pore space morphology analysis using maximal inscribed spheres, Physica A: Statistical Mechanics and its Applications, 371(2), 336-360. https://doi.org/10.1016/j.physa.2006.04.048
[35] Dong, H., Blunt, M. J., 2009. Pore-network extraction from micro-computerized-tomography images, Physical Review E, 80(3), 036307. https://doi.org/10.1103/PhysRevE.80.036307
[36] Mahabadi, N., Dai, S., Seol, Y., Sup Yun, T., Jang, J., 2016. The water retention curve and relative permeability for gas production from hydrate‐bearing sediments: pore‐network model simulation, Geochemistry, Geophysics, Geosystems, 17(8), 3099-3110. https://doi.org/10.1002/2016GC006372
[37] Merey, Ş., 2019. Prediction of transport properties for the Eastern Mediterranean Sea shallow sediments by pore network modelling, Journal of Petroleum Science and Engineering, 176, 403-420. https://doi.org/10.1016/j.petrol.2019.01.081
[38] Chauhan, S., Rühaak, W., Khan, F., Enzmann, F., Mielke, P., Kersten, M., Sass, I., 2016. Processing of rock core microtomography images: Using seven different machine learning algorithms, Computers & Geosciences, 86, 120-128. https://doi.org/10.1016/j.cageo.2015.10.013
[39] Koroteev, D. A., Nadeev, A. N., Yakimchuk, I. V., Varfolomeev, I. A., 2017. Method for building a 3D model of a rock sample, Google Patents. https:// https://patents.google.com/patent/US9558588B2/en
[40] Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C., 2013. Pore-scale imaging and modelling, Advances in Water Resources, 51, 197-216. https://doi.org/10.1016/j.advwatres.2012.03.003
[41] Koroteev, D.; Dinariev, O.; Evseev, N.; Klemin, D.; Nadeev, A.; Safonov, S.; Gurpinar, O.; Berg, S.; van Kruijsdijk, C.; Armstrong, R.; Myers, M.T.; Hathon, L.; de Jong, H., 2014. Direct hydrodynamic simulation of multiphase flow in porous rock, Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 55(04), 294-303.
[42] Berg, C. F., Lopez, O., Berland, H., 2017. Industrial applications of digital rock technology, Journal of Petroleum Science and Engineering, 157, 131-147. https://doi.org/10.1016/j.petrol.2017.06.074
[43] Evseev, N., Dinariev, O., Hurlimann, M., Safonov, S., 2015. Coupling multiphase hydrodynamic and NMR pore-scale modeling for advanced characterization of saturated rocks, Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 56(01), 32-44.
[44] Koroteev, D., Dinariev, O., Evseev, N., Klemin, D., Safonov, S., Gurpinar, O., Berg, S., van Kruijsdijk, C., Myers, M., Hathon, L., de Jong, H., Armstrong, R., 2013. Application of digital rock technology for chemical EOR screening, in SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia. https://doi.org/10.2118/165258-MS
[45] Klemin, D., Nadeev, A., Ziauddin, M., 2015. Digital rock technology for quantitative prediction of acid stimulation efficiency in carbonates, in SPE Annual Technical Conference and Exhibition, Houston, Texas, USA. https://doi.org/10.2118/174807-MS
[46] Yang, Y., Fugui, L., Zhang, Q., Li, Y., Wang, K., Xu, Q., Yang, J., Shang, Z., Junming, L., Wang, J., Liu, Z., Song, H., Sun, W., Li, J., Yao, J., 2023. Recent Advances in Multiscale Digital Rock Reconstruction, Flow Simulation, and Experiments during Shale Gas Production, Energy & Fuels, 37(4), 2475-2497. https://doi.org/10.1021/acs.energyfuels.2c03470
[47] Frank, F., Liu, C., Alpak, F. O., Berg, S., Riviere, B., 2018. Direct numerical simulation of flow on pore-scale images using the phase-field method, SPE Journal, 23(05), 1833-1850. https://doi.org/10.2118/182607-PA
[48] Bultreys, T., Van Hoorebeke, L., Cnudde, V., 2015. Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks, Advances in Water Resources, 78, 36-49. https://doi.org/10.1016/j.advwatres.2015.02.003
[49] Liu, M., Mostaghimi, P., 2017. Pore-scale simulation of dissolution-induced variations in rock mechanical properties, International Journal of Heat and Mass Transfer, 111, 842-851. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.049
[50] Liu, M., Shabaninejad, M., Mostaghimi, P., 2017. Impact of mineralogical heterogeneity on reactive transport modelling, Computers & Geosciences, 104, 12-19. https://doi.org/10.1016/j.cageo.2017.03.020
[51] Yu, X., Regenauer-Lieb, K., Tian, F.-B., 2020. Effects of surface roughness and derivation of scaling laws on gas transport in coal using a fractal-based lattice Boltzmann method, Fuel, 259, 116229. https://doi.org/10.1016/j.fuel.2019.116229
[52] Porter, M. L., Schaap, M. G., Wildenschild, D., 2009. Lattice-Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media, Advances in Water Resources, 32(11), 1632-1640. https://doi.org/10.1016/j.advwatres.2009.08.009
[53] Yoon, H., Kang, Q., Valocchi, A. J., 2015. Lattice Boltzmann-based approaches for pore-scale reactive transport, Reviews in Mineralogy and Geochemistry, 80(1), 393-431. https://doi.org/10.2138/rmg.2015.80.12
[54] Abdulle, A., Budáč, O., 2016. A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media, Computer Methods in Applied Mechanics and Engineering, 307, 1-31. https://doi.org/10.1016/j.cma.2016.03.016
[55] Sandström, C., Larsson, F., Runesson, K., Johansson, H., 2013. A two-scale finite element formulation of Stokes flow in porous media, Computer Methods in Applied Mechanics and Engineering, 261, 96-104. https://doi.org/10.1016/j.cma.2013.02.013
[56] Ramstad, T., Idowu, N., Nardi, C., Øren, P.-E., 2012. Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks, Transport in Porous Media, 94(2), 487-504. https://doi.org/10.1007/s11242-011-9877-8
[57] Boek, E. S., Venturoli, M., 2010. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries, Computers & Mathematics with Applications, 59(7), 2305-2314. https://doi.org/10.1016/j.camwa.2009.08.063
[58] Prodanović, M., Lindquist, W., Seright, R., 2007. 3D image-based characterization of fluid displacement in a Berea core, Advances in Water Resources, 30(2), 214-226. https://doi.org/10.1016/j.advwatres.2005.05.015
[59] Xu, L., Yu, X., Regenauer-Lieb, K., 2020. An immersed boundary-lattice Boltzmann method for gaseous slip flow, Physics of Fluids, 32(1), 012002. https://doi.org/10.1063/1.5126392
[60] Yu, X., Xu, L., Regenauer-Lieb, K., Jing, Y., Tian, F.-B., 2020. Modeling the effects of gas slippage, cleat network topology and scale dependence of gas transport in coal seam gas reservoirs, Fuel, 264, 116715. https://doi.org/10.1016/j.fuel.2019.116715
[61] Liu, M., Mostaghimi, P., 2017. High-resolution pore-scale simulation of dissolution in porous media, Chemical Engineering Science, 161, 360-369. https://doi.org/10.1016/j.ces.2016.12.064
[62] Wang, G., Jiang, C., Shen, J., Han, D., Qin, X., 2019. Deformation and water transport behaviors study of heterogeneous coal using CT-based 3D simulation, International Journal of Coal Geology, 211, 103204. https://doi.org/10.1016/j.coal.2019.05.011
[63] Mahdiabad, O. A., 2020. Primary drainage in static pore network modelling: a comparative study, University of Leoben.
[64] Chung, T., Wang, Y. D., Armstrong, R. T., Mostaghimi, P., 2019. Approximating permeability of microcomputed-tomography images using elliptic flow equations, SPE Journal, 24 (03), 1154-1163. https://doi.org/10.2118/191379-PA
[65] Jiang, Z., Van Dijke, M., Sorbie, K. S., Couples, G. D., 2013. Representation of multiscale heterogeneity via multiscale pore networks, Water Resources Research, 49 (9), 5437-5449. https://doi.org/10.1002/wrcr.20304
[66] Silin, D., Tomutsa, L., Benson, S. M., Patzek, T. W., 2011. Microtomography and pore-scale modeling of two-phase fluid distribution, Transport in Porous Media, 86 (2), 495-515. https://doi.org/10.1007/s11242-010-9636-2
[67] Hinebaugh, J., Fishman, Z., Bazylak, A., 2010. Unstructured pore network modeling with heterogeneous PEMFC GDL porosity distributions, Journal of The Electrochemical Society, 157 (11), B1651. https://doi.org/10.1149/1.3486095
[68] Thiedmann, R., Manke, I., Lehnert, W., Schmidt, V., 2011. Random geometric graphs for modelling the pore space of fibre-based materials, Journal of Materials Science, 46 (24), 7745-7759. https://doi.org/10.1007/s10853-011-5754-7
[69] Ioannidis, M. A., Chatzis, I., 1993. Network modelling of pore structure and transport properties of porous media, Chemical Engineering Science, 48 (5), 951-972. https://doi.org/10.1016/0009-2509(93)80333-L
[70] Hunt, A., 2005. Basic transport properties in natural porous media, Complexity, 10 (1), 22-37. https://doi.org/10.1002/cplx.20067
[71] Rebai, M., Prat, M., 2009. Scale effect and two-phase flow in a thin hydrophobic porous layer. Application to water transport in gas diffusion layers of proton exchange membrane fuel cells, Journal of Power Sources, 192 (2), 534-543. https://doi.org/10.1016/j.jpowsour.2009.02.090
[72] Blunt, M. J., Jackson, M. D., Piri, M., Valvatne, P. H., 2002. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow, Advances in Water Resources, 25 (8-12), 1069-1089. https://doi.org/10.1016/S0309-1708(02)00049-0
[73] Gostick, J. T., Ioannidis, M. A., Fowler, M. W., Pritzker, M. D., 2007. Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells, Journal of Power Sources, 173 (1), 277-290. https://doi.org/10.1016/j.jpowsour.2007.04.059
[74] Reeves, P. C., Celia, M. A., 1996. A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore‐scale network model, Water Resources Research, 32 (8), 2345-2358. https://doi.org/10.1029/96WR01105
[75] Joekar-Niasar, V., Hassanizadeh, S., 2012. Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A review, Critical Reviews in Environmental Science and Technology, 42 (18), 1895-1976. https://doi.org/10.1080/10643389.2011.574101
[76] Encalada, Á., Barzola-Monteses, J., Espinoza-Andaluz, M., 2020. A Permeability–Throat Diameter Correlation for a Medium Generated with Delaunay Tessellation and Voronoi Algorithm, Transport in Porous Media, 132 (1), 201-217. https://doi.org/10.1007/s11242-020-01387-z
[77] Johnson, A., Roy, I., Matthews, G., Patel, D., 2003. An improved simulation of void structure, water retention and hydraulic conductivity in soil with the Pore‐Cor three‐dimensional network, European Journal of Soil Science, 54 (3), 477-490. https://doi.org/10.1046/j.1365-2389.2003.00504.x
[78] Raoof, A., Nick, H. M., Hassanizadeh, S. M., Spiers, C., 2013. PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media, Computers & Geosciences, 61, 160-174. https://doi.org/10.1016/j.cageo.2013.08.005
[79] Bui, J. C., Lees, E. W., Pant, L. M., Zenyuk, I. V., Bell, A. T., Weber, A. Z., 2022. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis, Chemical Reviews. https://doi.org/10.1021/acs.chemrev.1c00901
[80] Ghiasi-Freez, J., Soleimanpour, I., Kadkhodaie-Ilkhchi, A., Ziaii, M., Sedighi, M., Hatampour, A., 2012. Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers, Computers & Geosciences, 45, 36-45. https://doi.org/10.1016/j.cageo.2012.03.006
[81] Sharifi, J., 2022. Intelligent pore type characterization: Improved theory for rock physics modelling, Geophysical Prospecting, 70 (5), 921-937. https://doi.org/10.1111/1365-2478.13204
[82] Shabani Afrapoli, M., Alipour, S., Torsaeter, O., 2011. Fundamental study of pore scale mechanisms in microbial improved oil recovery processes, Transport in Porous Media, 90(3), 949-964. https://doi.org/10.1007/s11242-011-9825-7
[83] Bondino, I., McDougall, S. R., Hamon, G., 2009. A pore-scale modelling approach to the interpretation of heavy oil pressure depletion experiments, Journal of Petroleum Science and Engineering, 65(1-2), 14-22. https://doi.org/10.1016/j.petrol.2008.12.010
[84] Hou, J., 2007. Network modeling of residual oil displacement after polymer flooding, Journal of Petroleum Science and Engineering, 59 (3-4), 321-332. https://doi.org/10.1016/j.petrol.2007.04.012
[85] Man, H., Jing, X., 2000. Pore network modelling of electrical resistivity and capillary pressure characteristics, Transport in Porous Media, 41 (3), 263-285. https://doi.org/10.1023/A:1006612100346
[86] Øren, P.-E., Bakke, S., 2003. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects, Journal of Petroleum Science and Engineering, 39(3-4), 177-199. https://doi.org/10.1016/S0920-4105(03)00062-7
[87] Gribble, C.M., Matthews, G.P., Laudone, G.M., Turner, A., Ridgway, C.J., Schoelkopf, J., Gane, P.A.C., 2011. Porometry, porosimetry, image analysis and void network modelling in the study of the pore-level properties of filters, Chemical Engineering Science, 66 (16), 3701-3709. https://doi.org/10.1016/j.ces.2011.05.013
[88] Schwarz, B. C., Devinny, J. S., Tsotsis, T. T., 2001. A biofilter network model—importance of the pore structure and other large-scale heterogeneities, Chemical Engineering Science, 56 (2), 475-483. https://doi.org/10.1016/S0009-2509(00)00251-7
[89] Hinebaugh, J., Bazylak, A., 2010. Condensation in PEM fuel cell gas diffusion layers: a pore network modeling approach, Journal of the Electrochemical Society, 157 (10), B1382. https://doi.org/10.1149/1.3467837
[90] Jamshidi, S., Boozarjomehry, R. B., Pishvaie, M. R., 2009. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms, Advances in Water Resources, 32 (10), 1543-1553. https://doi.org/10.1016/j.advwatres.2009.07.007
[91] Ebrahimi, A. N., Jamshidi, S., Iglauer, S., Boozarjomehry, R. B., 2013. Genetic algorithm-based pore network extraction from micro-computed tomography images, Chemical Engineering Science, 92, 157-166. https://doi.org/10.1016/j.ces.2013.01.045
[92] Vrettos, N. A., Imakoma, H., Okazaki, M., 1989. Characterization of porous media by means of the Voronoi-Delaunay tessellation, Chemical Engineering and Processing: Process Intensification, 25 (1), 35-45. https://doi.org/10.1016/0255-2701(89)85004-4
[93] Wildenschild, D., Vaz, C., Rivers, M., Rikard, D., Christensen, B., 2002. Using X-ray computed tomography in hydrology: systems, resolutions, and limitations, Journal of Hydrology, 267 (3-4), 285-297. https://doi.org/10.1016/S0022-1694(02)00157-9
[94] Ketcham, R. A., Carlson, W. D., 2001. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences, Computers & Geosciences, 27 (4), 381-400. https://doi.org/10.1016/S0098-3004(00)00116-3
[95] Al-Raoush, R., Willson, C., 2005. Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems, Journal of Hydrology, 300 (1-4), 44-64. https://doi.org/10.1016/j.jhydrol.2004.05.005
[96] Bakke, S., Øren, P.-E., 1997. 3-D pore-scale modelling of sandstones and flow simulations in the pore networks, SPE Journal, 2 (02), 136-149. https://doi.org/10.2118/35479-PA
[97] Arns, J.-Y., Sheppard, A., Arns, C., Knackstedt, M., Yelkhovsky, A., Pinczewski, W., 2007. Pore-level validation of representative pore networks obtained from micro-CT images, in Proceedings of the International Symposium of the Society of Core Analysts, 1-12.
[98] Jones, A. C., Arns, C. H., Hutmacher, D. W., Milthorpe, B. K., Sheppard, A. P., Knackstedt, M. A., 2009. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth, Biomaterials, 30 (7), 1440-1451. https://doi.org/10.1016/j.biomaterials.2008.10.056
[99] Sheppard, A., Sok, R., Averdunk, H., 2005. Improved pore network extraction methods, in International Symposium of the Society of Core Analysts, Society of Core Analysts, 2125, 1-11.
[100] Rabbani, A., Ayatollahi, S., Kharrat, R., Dashti, N., 2016. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image, Advances in Water Resources, 94, 264-277. https://doi.org/10.1016/j.advwatres.2016.05.020
[101] Dong, H., Fjeldstad, S., Alberts, L., Roth, S., Bakke, S., Øren, P.-E., 2008. Pore network modelling on carbonate: a comparative study of different micro-CT network extraction methods, in International Symposium of the Society of Core Analysts, Society of Core Analysts, 1-12.
[102] Das, A., Basu, S., Kumar, A., 2019. Modelling of shale rock pore structure based on gas adsorption, in E3S Web of Conferences, 92: EDP Sciences, 15006. https://doi.org/10.1051/e3sconf/20199215006
[103] Okabe, H., Blunt, M. J., 2004. Prediction of permeability for porous media reconstructed using multiple-point statistics, Physical Review E, 70 (6), 066135. https://doi.org/10.1103/PhysRevE.70.066135
[104] Valvatne, P. H., Piri, M., Lopez, X., Blunt, M. J., 2005. Predictive pore-scale modeling of single and multiphase flow, in Upscaling Multiphase Flow in Porous Media: Springer, 23-41. https://doi.org/10.1007/1-4020-3604-3_3
[105] Gharbi, O., Blunt, M. J., 2012. The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis, Water Resources Research, 48 (12). https://doi.org/10.1029/2012WR011877
[106] Mostaghimi, P., Bijeljic, B., Blunt, M. J., 2012. Simulation of flow and dispersion on pore-space images, SPE Journal, 17 (04), 1131-1141. https://doi.org/10.2118/135261-PA
[107] Raeini, A. Q., Bijeljic, B., Blunt, M. J., 2018. Generalized network modeling of capillary-dominated two-phase flow, Physical Review E, 97 (2), 023308. https://doi.org/10.1103/PhysRevE.97.023308
[108] Lubis, L., Harith, Z., 2014. Pore type classification on carbonate reservoir in offshore Sarawak using rock physics model and rock digital images, in IOP Conference Series: Earth and Environmental Science, 19 (1): IOP Publishing, 012003. https://doi.org/10.1088/1755-1315/19/1/012003
[109] Xu, S., Payne, M. A., 2009. Modeling elastic properties in carbonate rocks, The Leading Edge, 28 (1), 66-74. https://doi.org/10.1190/1.3064148
[110] Dou, Q., Sun, Y., Sullivan, C., 2011. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, West Texas, Journal of Applied Geophysics, 74 (1), 8-18. https://doi.org/10.1016/j.jappgeo.2011.02.010
[111] Lagree, B., 2014. Modelling of two-phase flow in porous media with volume-of-fluid method, Paris 6.
[112] Cudjoe, S. E., Ghahfarokhi, R. B., 2020. Application of Imaging Techniques in the Characterization of Organic-Rich Shales, Unconventional Hydrocarbon Resources: Techniques for Reservoir Engineering Analysis, 189.
[113] Oyinloye, M., 2021. Analysis and Visualization of 3D pore networks in Pleistocene reef cores from Shurayrah Island (Al Wajh, N Red Sea).
[114] Charlaftis, D., 2021. Assessing sandstone reservoir quality: identifying the reality, Durham University.
[115] Zou, C.N., Zhao, W.Z., Jia, C.Z., Zhu, R.K., Zhang, G.Y., Zhao, X., Yuan, X.J., 2008. Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China, Petroleum Exploration and Development, 35 (3), 257-271. https://doi.org/10.1016/S1876-3804(08)60071-3
[116] Bolandtaba, S., Skauge, A., 2011. Network modeling of EOR processes: a combined invasion percolation and dynamic model for mobilization of trapped oil, Transport in porous media, 89 (3), 357-382. https://doi.org/10.1007/s11242-011-9775-0
[117] Hammond, P. S., Unsal, E., 2012. A dynamic pore network model for oil displacement by wettability-altering surfactant solution, Transport in porous media, 92 (3), 789-817. https://doi.org/10.1007/s11242-011-9933-4
[118] Qin, C.-Z., Hassanizadeh, S. M., 2015. Pore-network modeling of solute transport and biofilm growth in porous media, Transport in Porous Media, 110 (3), 345-367. https://doi.org/10.1007/s11242-015-0546-1
[119] Lu, C., Yortsos, Y. C., 2001. A pore-network model of in-situ combustion in porous media, in SPE International Thermal Operations and Heavy Oil Symposium, Porlamar, Margarita Island, Venezuela. https://doi.org/10.2118/69705-MS
[120] Vickers, N. J., 2017. Animal communication: when i’m calling you, will you answer too?, Current biology, 27 (14), R713-R715. https://doi.org/10.1016/j.cub.2017.05.064
[121] Sorbie, K. S., Collins, I., 2010. A proposed pore-scale mechanism for how low salinity waterflooding works, in SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA. https://doi.org/10.2118/129833-MS
[122] Watson, M. G., Bondino, I., Hamon, G., McDougall, S. R., 2017. A pore-scale investigation of low-salinity waterflooding in porous media: Uniformly wetted systems, Transport in Porous Media, 118 (2), 201-223. https://doi.org/10.1007/s11242-017-0854-8
[123] Boujelben, A., McDougall, S., Watson, M., Bondino, I., Agenet, N., 2018. Pore network modelling of low salinity water injection under unsteady-state flow conditions, Journal of Petroleum Science and Engineering, 165, 462-476. https://doi.org/10.1016/j.petrol.2018.02.040
[124] Valvatne, P. H., Blunt, M. J., 2003. Predictive pore-scale network modeling, in SPE Annual Technical Conference and Exhibition, Denver, Colorado. https://doi.org/10.2118/84550-MS
[125] Lopez, X., Blunt, M. J., 2004. Predicting the impact of non-Newtonian rheology on relative permeability using pore-scale modeling, in SPE Annual Technical Conference and Exhibition, Houston, Texas. https://doi.org/10.2118/89981-MS
[126] Lopez, X., Valvatne, P. H., Blunt, M. J., 2003. Predictive network modeling of single-phase non-Newtonian flow in porous media, Journal of colloid and interface science, 264 (1), 256-265. https://doi.org/10.1016/S0021-9797(03)00310-2
[127] Lopez, X., 2004. Pore-scale modelling of non-Newtonian flow, University of London.
[128] Sochi, T., 2010. Flow of non-Newtonian fluids in porous media, Journal of Polymer Science Part B: Polymer Physics, 48 (23), 2437-2767. https://doi.org/10.1002/polb.22144
[129] Sochi, T., 2010. Pore-scale modeling of non-Newtonian flow in porous media, arXiv preprint arXiv:1011.0760. https://doi.org/10.48550/arXiv.1011.0760
[130] Sochi, T., 2010. Computational techniques for modeling non-Newtonian flow in porous media, International Journal of Modeling, Simulation, and Scientific Computing, 1 (02), 239-256. https://doi.org/10.1142/S179396231000016X
[131] Al-Gharbi, M. S., Blunt, M. J., 2003. A 2D Dynamic pore network model for modeling primary drainage, in Proceedings of the ESF Workshop on Multiphase Flow in Porous Media, Delft.
[132] Behbahani, H., Blunt, M. J., 2005. Analysis of imbibition in mixed-wet rocks using pore-scale modeling, SPE Journal, 10 (04), 466-474. https://doi.org/10.2118/90132-PA
[133] Behbahani, H. S., Di Donato, G., Blunt, M. J., 2006. Simulation of counter-current imbibition in water-wet fractured reservoirs, Journal of Petroleum Science and Engineering, 50 (1), 21-39. https://doi.org/10.1016/j.petrol.2005.08.001
[134] Li, J., McDougall, S., Sorbie, K., 2017. Dynamic pore-scale network model (PNM) of water imbibition in porous media, Advances in Water Resources, 107, 191-211. https://doi.org/10.1016/j.advwatres.2017.06.017
[135] Chaouche, M., Rakotomalala, N., Salin, D., Xu, B., Yortsos, Y., 1994. Capillary effects in drainage in heterogeneous porous media: continuum modelling, experiments and pore network simulations, Chemical Engineering Science, 49 (15), 2447-2466. https://doi.org/10.1016/0009-2509(94)E0040-W
[136] Okabe, H., Blunt, M. J., 2007. Pore space reconstruction of vuggy carbonates using microtomography and multiple‐point statistics, Water Resources Research, 43 (12). https://doi.org/10.1029/2006WR005680
[137] De Boever, E., et al., 2012. Quantification and prediction of the 3D pore network evolution in carbonate reservoir rocks, Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 67 (1), 161-178. https://doi.org/10.2516/ogst/2011170
[138] Piri, M., Blunt, M. J., 2002. Pore-scale modeling of three-phase flow in mixed-wet systems, in SPE Annual Technical Conference and Exhibition, San Antonio, Texas. https://doi.org/10.2118/77726-MS
[139] Alizadeh, A., Piri, M., 2014. Three‐phase flow in porous media: A review of experimental studies on relative permeability, Reviews of Geophysics, 52 (3), 468-521. https://doi.org/10.1002/2013RG000433
[140] Piri, M., Blunt, M. J., 2005. Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. I. Model description, Physical Review E, 71 (2), 026301. https://doi.org/10.1103/PhysRevE.71.026301
[141] Piri, M., Blunt, M. J., 2005. Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. II. Results, Physical Review E, 71 (2), 026302. https://doi.org/10.1103/PhysRevE.71.026302
[142] Hui, M.-H., Blunt, M. J., 2000. Pore-scale modeling of three-phase flow and the effects of wettability, in SPE/DOE SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma. https://doi.org/10.2118/59309-MS
[143] Hui, M.-H., Blunt, M. J., 2000. Effects of wettability on three-phase flow in porous media, The Journal of Physical Chemistry B, 104 (16), 3833-3845. https://doi.org/10.1021/jp9933222
[144] Suicmez, V. S., Piri, M., Blunt, M. J., 2008. Effects of wettability and pore-level displacement on hydrocarbon trapping, Advances in Water Resources, 31 (3), 503-512. https://doi.org/10.1016/j.advwatres.2007.11.003
[145] Suicmez, V. S., Piri, M., Blunt, M. J., 2007. Pore-scale simulation of water alternate gas injection, Transport in Porous Media, 66 (3), 259-286. https://doi.org/10.1007/s11242-006-0017-9
[146] Suicmez, V. S., Piri, M., Blunt, M. J., 2006. Pore-scale modeling of three-phase WAG injection: Prediction of relative permeabilities and trapping for different displacement cycles, in SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA. https://doi.org/10.2118/95594-MS
[147] Rhodes, M., Bijeljic, B., Blunt, M. J., 2009. A rigorous pore-to-field-scale simulation method for single-phase flow based on continuous-time random walks, SPE Journal, 14 (01), 88-94. https://doi.org/10.2118/106434-PA
[148] Rhodes, M. E., Bijeljic, B., Blunt, M. J., 2008. Pore-to-field simulation of single-phase transport using continuous time random walks, Advances in Water Resources, 31 (12), 1527-1539. https://doi.org/10.1016/j.advwatres.2008.04.006
[149] Bijeljic, B., Mostaghimi, P., Blunt, M. J., 2011. Signature of non-Fickian solute transport in complex heterogeneous porous media, Physical Review Letters, 107 (20), 204502. https://doi.org/10.1103/PhysRevLett.107.204502
[150] Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M. J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images, Physical Review E, 87 (1), 013011. https://doi.org/10.1103/PhysRevE.87.013011
[151] Lu, H., 2008. Investigation of recovery mechanisms in fractured reservoirs, Department of Earth Science and Engineering, Imperial College London.
[152] Hughes, R. G., Blunt, M. J., 2001. Network modeling of multiphase flow in fractures, Advances in Water Resources, 24 (3-4), 409-421. https://doi.org/10.1016/S0309-1708(00)00064-6
[153] Talabi, O., Alsayari, S., Fernø, M. A., Riskedal, H., Graue, A., Blunt, M. J., 2008. Pore-scale simulation of NMR response in carbonates, in Proceedings of the International Symposium of the Society of Core Analysis.
[154] Talabi, O., AlSayari, S., Iglauer, S., Blunt, M. J., 2009. Pore-scale simulation of NMR response, Journal of Petroleum Science and Engineering, 67 (3-4), 168-178. https://doi.org/10.1016/j.petrol.2009.05.013
[155] Idowu, N. A., 2009. Pore-scale modeling: Stochastic network generation and modeling of rate effects in waterflooding, PhD thesis. https://doi.org/10.25560/4436
[156] Idowu, N. A., Blunt, M. J., 2010. Pore-scale modelling of rate effects in waterflooding, Transport in Porous Media, 83 (1), 151-169. https://doi.org/10.1007/s11242-009-9468-0
[157] Bekri, S., Laroche, C., Vizika, O., 2005. Pore network models to calculate transport and electrical properties of single or dual-porosity rocks, in SCA, 35.
[158] Békri, S., Nardi, C., Vizika, O., 2004. Effect of wettability on the petrophysical parameters of vuggy carbonates: network modeling investigation, in International Symposium of the Society of Core Analysts, Abu Dhabi, UAE, 5-9 October.
[159] Ioannidis, M., Chatzis, I., 2000. A dual-network model of pore structure for vuggy carbonates, in SCA2000-09, International Symposium of the Society of Core Analysts, Abu Dhabi, UAE.
[160] Bustos, C. I., Toledo, P. G., 2003. Pore-level modeling of gas and condensate flow in two-and three-dimensional pore networks: Pore size distribution effects on the relative permeability of gas and condensate, Transport in Porous Media, 53 (3), 281-315. https://doi.org/10.1023/A:1025026332475
[161] Kharabaf, H., Yortsos, Y. C., 1998. A pore-network model for foam formation and propagation in porous media, SPE Journal, 3 (01), 42-53. https://doi.org/10.2118/36663-PA
[162] Chen, M., Yortsos, Y., Rossen, W., 2005. Insights on foam generation in porous media from pore-network studies, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 256 (2-3), 181-189. https://doi.org/10.1016/j.colsurfa.2005.01.020
[163] Romero-Zeron, L., Kantzas, A., 2005. Evolution of foamed gel confined in pore network models, in Canadian International Petroleum Conference, Petroleum Society of Canada.
[164] Ma, J., Sanchez, J. P., Wu, K., Couples, G. D., Jiang, Z., 2014. A pore network model for simulating non-ideal gas flow in micro-and nano-porous materials, Fuel, 116, 498-508. https://doi.org/10.1016/j.fuel.2013.08.041
[165] Wang, J.-Q., Zhao, J.-F., Yang, M.-J., Li, Y.-H., Liu, W.-G., Song, Y.-C., 2015. Permeability of laboratory-formed porous media containing methane hydrate: observations using X-ray computed tomography and simulations with pore network models, Fuel, 145, 170-179. https://doi.org/10.1016/j.fuel.2014.12.079
[166] Wang, J., Zhao, J., Zhang, Y., Wang, D., Li, Y., Song, Y., 2016. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT, Fuel, 163, 34-40. https://doi.org/10.1016/j.fuel.2015.09.044
[167] Aghabozorgi, S., Rostami, B., 2016. An investigation of polymer adsorption in porous media using pore network modelling, Transport in Porous Media, 115 (1), 169-187. https://doi.org/10.1007/s11242-016-0760-5
[168] Huang, X., Bandilla, K. W., Celia, M. A., 2016. Multi-physics pore-network modeling of two-phase shale matrix flows, Transport in Porous Media, 111 (1), 123-141. https://doi.org/10.1007/s11242-015-0584-8
[169] Wang, X., Sheng, J. J., 2018. Pore network modeling of the Non-Darcy flows in shale and tight formations, Journal of Petroleum Science and Engineering, 163, 511-518. https://doi.org/10.1016/j.petrol.2018.01.021
[170] Tansey, J., Balhoff, M. T., 2016. Pore network modeling of reactive transport and dissolution in porous media, Transport in Porous Media, 113 (2), 303-327. https://doi.org/10.1007/s11242-016-0695-x
[171] Zhan, M.-l., Wei, Y., Huang, Q.-f., Sheng, J.-c., 2015. Study on migration model of fine particles in base soil under the seepage force based on pore network analysis.
[172] Feng, Q., Li, S., Han, X., Wang, S., 2015. Network simulation for formation impairment due to suspended particles in injected water, Journal of Petroleum Science and Engineering, 133, 384-391. https://doi.org/10.1016/j.petrol.2015.06.027
[173] Seetha, N., Raoof, A., Kumar, M. M., Hassanizadeh, S. M., 2017. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale, Journal of Contaminant Hydrology, 200, 1-14. https://doi.org/10.1016/j.jconhyd.2017.03.002
[174] Gostick, J., et al., 2016. OpenPNM: A pore network modeling package, Computing in Science & Engineering, 18 (4), 60-74. https://doi.org/10.1109/MCSE.2016.49
[175] Yang, Y., Wang, K., Zhang, L., Sun, H., Zhang, K., Ma, J., 2019. Pore-scale simulation of shale oil flow based on pore network model, Fuel, 251, 683-692. https://doi.org/10.1016/j.fuel.2019.03.083
[176] Esteves, B. F., Lage, P. L., Couto, P., Kovscek, A. R., 2020. Pore-network modeling of single-phase reactive transport and dissolution pattern evaluation, Advances in Water Resources, 145, 103741. https://doi.org/10.1016/j.advwatres.2020.103741
[177] Golparvar, A., Zhou, Y., Wu, K., Ma, J., Yu, Z., 2018. A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media, Advances in Geo-Energy Research, 2 (4), 418-440. https://doi.org/10.26804/ager.2018.04.07
[178] Qin, C., 2015. Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: Dynamic pore-network modeling, Journal of the Electrochemical Society, 162 (9), F1036. https://doi.org/10.1149/2.0861509jes
[179] Fatt, I., 1956. The network model of porous media, Transactions of the AIME, 207 (01), 144-181. https://doi.org/10.2118/574-G
[180] Mahanta, B., Vishal, V., Ranjith, P., Singh, T., 2020. An insight into pore-network models of high-temperature heat-treated sandstones using computed tomography, Journal of Natural Gas Science and Engineering, 77, 103227. https://doi.org/10.1016/j.jngse.2020.103227
[181] Foroozesh, J., Abdalla, A. I. M., Zivar, D., Douraghinejad, J., 2021. Stress-dependent fluid dynamics of shale gas reservoirs: A pore network modeling approach, Journal of Natural Gas Science and Engineering, 95, 104243. https://doi.org/10.1016/j.jngse.2021.104243
[182] Mehmani, A., Verma, R., Prodanović, M., 2020. Pore-scale modeling of carbonates, Marine and Petroleum Geology, 114, 104141. https://doi.org/10.1016/j.marpetgeo.2019.104141
[183] Bultreys, T., De Boever, W., Cnudde, V., 2016. Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art, Earth-Science Reviews, 155, 93-128. https://doi.org/10.1016/j.earscirev.2016.02.001
[184] Morales, V. L., Dentz, M., Willmann, M., Holzner, M., 2017. Stochastic dynamics of intermittent pore‐scale particle motion in three‐dimensional porous media: Experiments and theory, Geophysical Research Letters, 44 (18), 9361-9371. https://doi.org/10.1002/2017GL074326
[185] Sadeghnejad, S., Enzmann, F., Kersten, M., 2021. Digital rock physics, chemistry, and biology: challenges and prospects of pore-scale modelling approach, Applied Geochemistry, 131, 105028. https://doi.org/10.1016/j.apgeochem.2021.105028
[186] Hoteit, H., Firoozabadi, A., 2008. An efficient numerical model for incompressible two-phase flow in fractured media, Advances in Water Resources, 31 (6), 891-905. https://doi.org/10.1016/j.advwatres.2008.02.004
[187] Grima, A. P., Wypych, P. W., 2011. Investigation into calibration of discrete element model parameters for scale-up and validation of particle–structure interactions under impact conditions, Powder Technology, 212 (1), 198-209. https://doi.org/10.1016/j.powtec.2011.05.017
[188] Dominguez, G., 1992. Carbonate reservoir characterization: A geologic-engineering analysis, Part I, Elsevier.
[189] Unsal, E., Dane, J., Dozier, G. V., 2005. A genetic algorithm for predicting pore geometry based on air permeability measurements, Vadose Zone Journal, 4 (2), 389-397. https://doi.org/10.2136/vzj2004.0116
[190] Fischer, U., Celia, M. A., 1999. Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a pore‐scale network model, Water Resources Research, 35 (4), 1089-1100. https://doi.org/10.1029/1998WR900048
[191] Dillard, L. A., Blunt, M. J., 2000. Development of a pore network simulation model to study nonaqueous phase liquid dissolution, Water Resources Research, 36 (2), 439-454. https://doi.org/10.1029/1999WR900301
[192] Gostick, J. T., 2017. Versatile and efficient pore network extraction method using marker-based watershed segmentation, Physical Review E, 96 (2), 023307. https://doi.org/10.1103/PhysRevE.96.023307
[193] Sheppard, A. P., Sok, R. M., Averdunk, H., 2004. Techniques for image enhancement and segmentation of tomographic images of porous materials, Physica A: Statistical Mechanics and its Applications, 339 (1-2), 145-151. https://doi.org/10.1016/j.physa.2004.03.057
[194] Thompson, K. E., Willson, C. S., Zhang, W., 2006. Quantitative computer reconstruction of particulate materials from microtomography images, Powder Technology, 163 (3), 169-182. https://doi.org/10.1016/j.powtec.2005.12.016
[195] Rabbani, A., Jamshidi, S., Salehi, S., 2014. An automated simple algorithm for realistic pore network extraction from micro-tomography images, Journal of Petroleum Science and Engineering, 123, 164-171. https://doi.org/10.1016/j.petrol.2014.08.020
[196] Bultreys, T., Singh, K., Raeini, A.Q., Ruspini, L.C., Øren, P.-E., Berg, S., Rücker, M., Bijeljic, B., Blunt, M.J., 2020. Verifying pore network models of imbibition in rocks using time‐resolved synchrotron imaging, Water Resources Research, 56 (6), e2019WR026587. https://doi.org/10.1029/2019WR026587
[197] Bondino, I., Hamon, G., Kallel, W., Kac, D., 2013. Relative permeabilities from simulation in 3D rock models and equivalent pore networks: Critical review and way forward1, Petrophysics, 54 (06), 538-546.
[198] Berryman, J. G., Blair, S. C., 1987. Kozeny–Carman relations and image processing methods for estimating Darcy’s constant, Journal of Applied Physics, 62 (6), 2221-2228. https://doi.org/10.1063/1.339497
[199] Singh, K., Menke, H., Andrew, M., Lin, Q., Rau, C., Blunt, M.J., Bijeljic, B., 2017. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media, Scientific Reports, 7 (1), 1-13. https://doi.org/10.1038/s41598-017-05204-4
[200] Schlüter, S., Li, T., Vogel, H., Berg, S., Wildenschild, D., 2017. Time scales of relaxation dynamics during hydraulic non-equilibrium in two-phase flow, Water Resources Research, 53, 4709-4724. https://doi.org/10.1002/2016WR019815
[201] Armstrong, R. T., McClure, J. E., Berrill, M. A., Rücker, M., Schlüter, S., Berg, S., 2016. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow, Physical Review E, 94 (4), 043113. https://doi.org/10.1103/PhysRevE.94.043113
[202] Reynolds, C. A., Menke, H., Andrew, M., Blunt, M. J., Krevor, S., 2017. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone, Proceedings of the National Academy of Sciences, 114 (31), 8187-8192. https://doi.org/10.1073/pnas.1702834114
[203] Liu, Y., Slotine, J.-J., Barabási, A.-L., 2011. Controllability of complex networks, Nature, 473, 167-176. https://doi.org/10.1038/nature10011 | ||
آمار تعداد مشاهده مقاله: 313 تعداد دریافت فایل اصل مقاله: 297 |