تعداد نشریات | 31 |
تعداد شمارهها | 705 |
تعداد مقالات | 6,886 |
تعداد مشاهده مقاله | 11,262,427 |
تعداد دریافت فایل اصل مقاله | 7,556,486 |
Optimization and Placement of DG Resources in the Network to Reduce Line Loading | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 2، دوره 6، شماره 2، شهریور 2023، صفحه 89-100 اصل مقاله (878.35 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2023.45491.1474 | ||
نویسندگان | ||
Farhad Zishan* 1؛ Ehsan Akbari2؛ Abdul Reza Sheikholeslami3؛ Nima shafaghatian4 | ||
1Sahand University of Technology | ||
2Department of Electrical Engineering, Mazandaran University of Science andTechnology, Babol, | ||
3Department of Electrical Engineering, Babol Noshirvani University of Technology, Babol, Iran | ||
4Electrical Engineering Department, Zanjan University, Zanjan, | ||
چکیده | ||
This paper contributes to the design, modeling, and planning of a distributed generation (DG) network with wind and solar by means of the particle swarm algorithm (PSO) algorithm in the IEEE 33-bus network, aiming to minimize The results indicate an adequate performance in a variety of environments, and the presence of distributed wind/solar energy generators decreases network stress by feeding loads locally. These systems (wind and solar) can be used in remote areas without power networks, or even in areas where there is a tendency to use renewable energy despite the presence of a power network. They can also supply the output load for most of the day and night. Probability distribution functions are used, and the outputs are expressed as probability density distribution functions instead of absolute numbers. In addition, there is a high degree of uncertainty regarding the state of the system, which is an associated renewable energy source within the power system elements. By means of MATLAB software, the proposed method is implemented in order to ensure effectiveness and validate the results. | ||
کلیدواژهها | ||
Distributed Generations؛ Uncertainty of Resources؛ Optimization؛ PSO Algorithm | ||
مراجع | ||
[1] Ahmed, Z., Ahmad, M., Rjoub, H., Kalugina, O. A., & Hussain, N. (2021). Economic growth, renewable energy consumption, and ecological footprint: Exploring the role of environmental regulations and democracy in sustainable development. Sus-tainable Development.https://doi.org/10.1002/sd.2251
[2] Adebayo, T. S., Rjoub, H., Akinsola, G. D., & Oladipupo, S.D. (2022). The asymmetric effects of renewable energy consumption and trade openness on carbon emissions in Sweden: new evidence from quantile-on-quantile regression approach. Environmental Science and Pollution Research,29(2), 1875-1886. [3] Adebayo, T. S., & Rjoub, H. (2021). A new perspective into the impact of renewable and nonrenewable energy consumption on environmental degradation in Argentina: a time–frequency analysis. Environmental Science and Pollution Research, 1-17. [4] Odugbesan, J. A., & Rjoub, H. (2020). Relationship among economic growth, energy consumption, CO2 emission, and urbanization: evidence from MINT countries. Sage Open,10(2), 2158244020914648. [5] Farhadi, P., & Taheri, B. (2017, April). Smart meter tariff pricing using load demand response model. In 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG) (pp. 135-139). IEEE. [6] Liang Zhang, Xuesong Wang, Zhe Zhang, Ying Cui, Lyu Ling,... Cai, G. (2021). An Adaptative Control Strategy for Interfacing Converter of Hybrid Microgrid Based on Improved Virtual Synchronous Generator. IET Renewable Power Generation. doi: 10.1049/rpg2.12293 [7] Jalili, A., & Taheri, B. (2020). Optimal sizing and sitting of distributed generations in power distribution networks using firefly algorithm. Technology and Economics of Smart Grids and Sustainable Energy, 5, 1-14. [8] Zishan, F., Akbari, E., Montoya, O. D., Giral-Ramírez, D. A., & Nivia-Vargas, A. M. (2022). Electricity retail market and ac-countability-based strategic bidding model with short-term energy storage considering the uncertainty of consumer demand response. Results in Engineering, 100679. [9] Cho, G. J., Kim, C. H., Oh, Y. S., Kim, M. S., & Kim, J. S. (2018). Planning for the future: Optimization-based distribution planning strategies for integrating distributed energy resources. IEEE Power and Energy Magazine, 16(6), 77-87. [10] Tightiz, L., Mansouri, S., Zishan, F., Yoo, J., & Shafaghatian, N. (2022). Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm. Energies, 15(21), 8210. [11] Kalantar, Saeed Vedadi, Amir Ali Saifoddin, Ahmad Hajinezhad, and Mohammad Hossein Ahmadi. "A Solution to Prevent a Blackout Crisis: Determining the Behavioral Potential and Capacity of Solar Power." International Journal of Photoenergy 2021 (2021). [12] Ganjei, N., Zishan, F., Alayi, R., Samadi, H., Jahangiri, M., Kumar, R., & Mohammadian, A. (2022). Designing and Sensitivity Analysis of an Off-Grid Hybrid Wind-Solar Power Plant with Diesel Generator and Battery Backup for the Rural Area in Iran. Journal of Engineering, 2022. [13] D. Ma et al., "Dual-Predictive Control with Adaptive Error Correction Strategy for AC Microgrids," IEEE Transactions on Power Delivery , Volume: 37, Issue: 3, June 2022. [14] Grisales-Noreña, L. F., Montoya, O. D., Cortés-Caicedo, B.,Zishan, F., & Rosero-García, J. (2023). Optimal Power Dispatch of PV Generators in AC Distribution Networks by Considering Solar, Environmental, and Power Demand Conditions from Colombia. Mathematics, 11(2), 484. [15] Fan, S., Wang, Y., Cao, S., Zhao, B., Sun, T.,... Liu, P. (2022). A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels. Energy (Oxford), 239, 122302.doi:10.1016/j.energy.2021.122302 [16] Taheri, B., Foroud, A. A., & Jabari, F. (2023). Design and performance optimization of a tri‐generation energy hub considering demand response programs. Energy Science & Engineering, 11(2), 675-684. [17] R. Wang, Q. Sun, W. Hu, Y. Li, D. Ma and P. Wang, "SoCBased Droop Coefficients Stability Region Analysis of the Battery for Stand-Alone Supply Systems With Constant Power Loads," in IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 7866-7879, 2021. [18] Zishan, F., Mansouri, S., Abdollahpour, F., Grisales-Noreña, L. F., & Montoya, O. D. (2023). Allocation of Renewable Energy Resources in Distribution Systems while Considering the Uncertainty of Wind and Solar Resources via the Multi Objective Salp Swarm Algorithm. Energies,16(1), 474. [19] Rikani, A. S. (2021). Numerical analysis of free heat transfer properties of flat panel solar collectors with different geometries. Journal of Research in Science, Engineering and Technology, 9(01), 95-116. [20] Huy, P. D., Ramachandaramurthy, V. K., Yong, J. Y., Tan, K. M., & Ekanayake, J. B. (2020). Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage. Energy, 195, 117011. [21] Zhang, S., Cheng, H., Li, K., Tai, N., Wang, D., & Li, F.(2018). Multi-objective distributed generation planning in distribu-tion network considering correlations among uncertainties. Applied energy, 226, 743-755. [22] Jiawen Bai et al., " Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants’’, Energies 2019, 12(20), 3832. [23] Sadeghi, B., Shafaghatian, N., Alayi, R., El Haj Assad, M., Zishan, F., & Hosseinzadeh, H. (2022). Optimization of synchronized frequency and voltage control for a distributed generation system using the Black Widow Optimization algorithm. Clean Energy, 6(1), 869-882. [24] Ahmadi, Mohammad Hossein, Alireza Baghban, Milad Sadeghzadeh, Mohammad Zamen, Amir Mosavi, Shahaboddin Shamshirband, Ravinder Kumar, and Mohammad Mohammadi-Khanaposhtani. "Evaluation of electrical efficiency of photovoltaic thermal solar collector."Engineering Applications of Computational Fluid Mechanics 14, no. 1 (2020): 545-565. [25] R. Wang, Q. Sun, D. Ma and Z. Liu, "The Small-Signal Stability Analysis of the Droop-Controlled Converter in Electromagnetic Timescale," in IEEE Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1459-1469, July 2019. [26] Akbari, E., Sheikholeslami, A. R., & Zishan, F. (2023). Participation of Renewable Energy in Providing Demand Response in Presence of Energy Storage. Renewable Energy Research and Applications, 4(2), 225-234. [27] Böttcher, O. (2012). Energy efficient and sustainable federal buildings in Germany. REHVA J, 49(3), 41-45. [28] Alayi, R., Zishan, F., Mohkam, M., Hoseinzadeh, S., Memon, S., & Garcia, D. A. (2021). A sustainable energy distribution configuration for microgrids integrated to the national grid using back-to-back converters in a renewable power system. Electronics, 10(15), 1826. [29] Taheri, B., Jabari, F., & Foroud, A. A. (2023). A green cogeneration microgrid composed of water-source heat pumps, a gravity energy storage, and a bio-fueled gas turbine: design and techno-economic optimization. Sustainable Cities and Society, 104594. [30] Zamani, R., Hamedani-Golshan, M. E., Haes Alhelou, H., Siano, P., & R Pota, H. (2018). Islanding detection of synchronous distributed generator based on the active and reactive power control loops. Energies, 11(10), 2819. [31] Maalla, A. (2020, June). Research on Reactive Power Control of the HVDC Transmission System. In 2020 IEEE 4th Infor-mation Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 1, pp. 2475-2479). IEEE. [32] Zishan, F., Akbari, E., Montoya, O. D., Giral-Ramírez, D. A., & Molina-Cabrera, A. (2022). Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm. Electronics, 11(23), 3886. [33] Tang, Y., Hu, W., Cao, D., Hou, N., Li, Y., Chen, Z., & Blaabjerg, F. (2021). Artificial intelligence-aided minimum reactive power control for the DAB converter based on harmonic analysis method. IEEE Transactions on Power Electronics, 36(9), 9704-9710. [34] Ehsan, A., & Yang, Q. (2018). Optimal integration and planning of renewable distributed generation in the power distribu-tion networks: A review of analytical techniques. Applied Energy, 210, 44-59. [35] Mykola, T., Valerii, K., Andriy, R., Demeshchuk, V., & Воhdan, K. (2019). Evaluating Simulation and Development of Algo-rithms of Energy Consumption Reduction Based on Wireless Sensor Networks. Journal of Research in Science, Engineering and Technology, 7(3), 18-24. [36] Wang, Y., Zou, R., Liu, F., Zhang, L., & Liu, Q. (2021). A review of wind speed and wind power forecasting with deep neural networks. Applied energy, 304, 117766. doi: 10.1016/j.apenergy.2021.117766 [37] K. Deb, A. Kumar, Real coded genetic algorithms with simulated binarycrossover: studies on multi modal and multiobjec-tive problems, Complex Syst.9 (1995) 431– 454.Quezada, V. M., Abbad, J. R., & Roman, T. G. S. (2006). Assessment of energy dis-tribution losses for increasing penetration of distributed generation. IEEE Transactions on power systems, 21(2), 533-540. [38] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Pro-ceedings of the Sixth International Sym-posium on Micro Machine and HumanScience, New York, NY, 1995, pp. 39-43. [39] Zhang, M., Xu, Z., Lu, X., Liu, Y., Xiao, Q., & Taheri, B. (2021). An optimal model identification for solid oxide fuel cell based on extreme learning machines optimized by improved Red Fox Optimization algorithm. International Journal of Hydrogen Energy, 46(55), 28270-28281. [40] Moradi, M. H., & Abedini, M. (2012). A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. International Journal of Electrical Power & Energy Systems, 34(1), 66-74. [41] Aman, M. M., Jasmon, G. B., Mokhlis, H., & Bakar, A. H. A. (2012). Optimal placement and sizing of a DG based on a new power stability index and line losses. International Journal of Electrical Power & Energy Systems, 43(1), 1296-1304. [42] Atwa, Y. M., El-Saadany, E. F., Salama, M. M. A., & Seethapathy, R. (2009). Optimal renewable resources mix for distribution system energy loss minimization. IEEE Transactions on Power Systems, 25(1), 360-370. [43] Hung, D. Q., Mithulananthan, N., & Bansal, R. C. (2010). Analytical expressions for DG allocation in primary distribution networks. IEEE Transactions on energy conversion, 25(3), 814-820. [44] Porwik, P., Doroz, R., & Orczyk, T. (2016). Signatures verification based on PNN classifier optimised by PSO algorithm. Pattern Recognition, 60, 998-1014. [45] G.Carpinelli,P.Caramia,P.Varilone, Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems, Renewable Energy, Volume 76, April 2015, Pages 283–295. [46] Montoya, O. D., Zishan, F., & Giral-Ramírez, D. A. (2022). Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks. Mathematics, 10(19), 3649. [47] Akbari, E., Shafaghatian, N., Zishan, F., Montoya, O. D., & Giral-Ramírez, D. A. (2022). Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations. IEEE Access, 10, 95824-95838. [48] M. Rostamzadeh1, K. Valipour1, S. J. Shenava1, M. Khalilpour1, N. Razmjoo,’’ Optimal location and capacity of multi-distributed generation for loss reduction and voltage profile improvement using imperialist competitive algorithm’’, Artificial Intelligence Research, December,Vol(1), 22012. [49] A.M. El-Zonkoly,’’ Optimal placement of multi-distributed generation units including different load models using particle swarm optimization’’, Swarm and Evolutionary Computation (1),2011. [50] Reza Jabbari-Sabeta , Seyed-Masoud Moghaddas Tafreshib, Seyed Sattar Mirhoseinic,’’ Microgrid operation and manage-ment using probabilistic reconfiguration and unit commitment’’, Electrical Power and Energy Systems (75), (2016) . [51] Ugranlı F. Ersavas_ C. Karatepe E. Neural network based distributed generation allocation for minimizing voltage fluctua-tion due to uncertainty of the output power. In: Proc IEEE INISTA, June, 2011, Istanbul, Turkey; 2011. p. 4159. [52] Karki R, Hu P, Billinton R. A simplified wind power generation model for reliability evaluation. IEEE Trans Energy Con-vers 2006;21(2):413–8. [53] Mansouri, S., Zishan, F., Montoya, O. D., Azimizadeh, M., & Giral-Ramírez, D. A. (2023). Using an intelligent method for microgrid generation and operation planning while considering load uncertainty. Results in Engineering, 17, 100978. [54] Mohseni ‐ Bonab, Seyed Masoud, and Abbas Rabiee. "Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi‐objective model at the presence of uncertain wind power generation." IET Generation, Transmission & Distribution 11.4 (2017): 815-829. [55] Singh D, Misra RK, Singh D. Effect of load models in distributed generation planning. IEEE Trans Power Syst 2007;22:2204e12. [56] Kayal P, Chanda CK. Placement of wind and solar based DGs in distribution system for power loss minimization and voltage stability improvement. Elect Power Energy Syst 2013;53:795e809. [57] Alayi, R., Zishan, F., Seyednouri, S. R., Kumar, R., Ahmadi, M. H., & Sharifpur, M. (2021). Optimal load frequency control of island microgrids via a PID controller in the presence of wind turbine and PV. Sustainability, 13(19), 10728. [58] Sarineh Hacopian Dolatabadi, Maedeh Ghorbanian, Pierluigi Siano, and Nikos D. Hatziargyriou,’’ An Enhanced IEEE 33 Bus Benchmark Test System for Distribution System Studies’’, IEEE Transactions on Power Systems , Volume: 36, Issue: 3, 2021. [59] Morteza Aien, Mahmud Fotuhi-Firuzabad, and Masoud Rashidinejad,’’ Probabilistic Optimal Power Flow in Correlated Hybrid Wind–Photovoltaic Power Systems’’IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014. | ||
آمار تعداد مشاهده مقاله: 277 تعداد دریافت فایل اصل مقاله: 291 |