تعداد نشریات | 30 |
تعداد شمارهها | 690 |
تعداد مقالات | 6,765 |
تعداد مشاهده مقاله | 10,998,758 |
تعداد دریافت فایل اصل مقاله | 7,409,750 |
Divisible associative aggregation operations on finite chains | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 1، دوره 20، شماره 5، آذر و دی 2023، صفحه 1-8 اصل مقاله (154.32 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.44566.7845 | ||
نویسندگان | ||
Yan Su1؛ Yong Su* 2؛ Radko Mesiar3 | ||
1Suzhou University of Science and Technology | ||
2School of mathematics sciences,Suzhou University of Science and Technology,Suzhou, Jiangsu 215009,China | ||
3Faculty of Civil Engineering, Department of Mathematics, Slovak University of Technology (STU), Bratislava, Slovakia | ||
چکیده | ||
There exist several versions of discrete counterpart of continuity in the framework of finite chains, e.g., the smoothness, the divisibility, intermediate-value property and the 1-Lipschitz property. In this paper, we first discuss the relationships among the smoothness, divisibility, intermediate-value property and 1-Lipschitz property. Second, we present complete characterizations of divisible associative aggregation operations on finite chains. | ||
کلیدواژهها | ||
Aggregation function؛ Smoothness؛ Divisibility؛ 1-Lipschitz property؛ Intermediate-value property | ||
مراجع | ||
[1] M. Couceiro, J. Devillet, J. L. Marichal, Characterizations of idempotent discrete uninorms, Fuzzy Sets and Systems, 334 (2018), 60-72.
[2] G. Epstein, Multiple-valued logic design, CRC Press, Boca Raton, 1993.
[3] J. C. Fodor, Smooth associative operations on nite ordinal scales, IEEE Transactions on Fuzzy Systems, 8(6) (2000), 791-795. [4] J. Fodor, R. R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5(4) (1997), 411-427.
[5] L. Godo, C. Sierra, A new approach to connective generation in the framework of expert systems using fuzzy logic, in Proc. 18th Int. Symp. Multiple-Valued Logic, Washington, DC, (1988), 157-162.
[6] S. Gottwald, A treatise on many-valued logics, Research Studies Press, Baldock, 2001.
[7] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.
[8] F. Kouchakinejad, A. Stupnanova, A. Seliga, A note on divisible discrete triangular norms, Iranian Journal of Fuzzy Systems, 19(1) (2022), 73-81.
[9] J. L. Marichal, On the associativity functional equation, Fuzzy Sets and Systems, 114 (2000), 381-389.
[10] M. Mas, M. Monserrat, J. Torrens, On bisymmetric operators on a nite chain, IEEE Transactions on Fuzzy Systems, 11(5) (2003), 647-651.
[11] G. Mayor, J. Monreal, Additive generators of discrete conjunctive aggregation operations, IEEE Transactions on Fuzzy Systems, 15(6) (2007), 1046-1052.
[12] G. Mayor, J. Monreal, On some classes of discrete additive generators, Fuzzy Sets and Systems, 264 (2015), 110-120.
[13] G. Mayor, J. Suner, J. Torrens, Copula-like operations on nite settings, IEEE Transactions on Fuzzy Systems, 13(4) (2005), 468-477.
[14] G. Mayor, J. Torrens, On a class of operators for expert systems, International Journal of Intelligent Systems, 8 (1993), 771-778.
[15] G. Mayor, J. Torrens, Triangular norms on discrete settings, in: E.P. Klement, R. Mesiar (Eds.), Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, Elsevier, Amsterdam, (2005), 189-230.
[16] V. Novak, A formal theory of intermediate quanti ers, Fuzzy Sets and Systems, 159 (2008), 1229-1246.
[17] D. Ruiz-Aguilera, J. Torrens, A characterization of discrete uninorms having smooth underlying operators, Fuzzy Sets and Systems, 268 (2015), 44-58.
[18] Y. Su, H. Liu, Semi-t-operators on a nite totally ordered set, Kybernetika, 51(4) (2015), 667-677.
[19] Y. Su, H. Liu, W. Pedrycz, On the discrete bisymmetry, IEEE Transactions on Fuzzy Systems, 26(1) (2018), 374-378.
[20] Y. Su, B. Zhao, Characterizing autodistributive aggregation operations de ned on nite linearly ordered scales, Fuzzy Sets and Systems, 414 (2021), 85-93.
[21] R. R. Yager, Non-numeric multi-criteria multi-person decision making, Group Decisions Negotiation, 2 (1993), 81-93.
[22] R. R. Yager, Ordinal scale based uncertainty models for AI, Information Fusion, 64 (2020), 92-98. | ||
آمار تعداد مشاهده مقاله: 196 تعداد دریافت فایل اصل مقاله: 216 |