تعداد نشریات | 29 |
تعداد شمارهها | 630 |
تعداد مقالات | 6,368 |
تعداد مشاهده مقاله | 9,731,596 |
تعداد دریافت فایل اصل مقاله | 6,362,983 |
Synchronization Control Strategy of Inverted Pendulums using Control Law Partitioning and Contraction Theory | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 4، دوره 6، شماره 2، شهریور 2023، صفحه 113-122 اصل مقاله (1.53 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2023.45058.1469 | ||
نویسندگان | ||
Rogayyeh Soltani1؛ Bashir Naderi* 2؛ Saeed Nezhadhossein1؛ Aghileh Heydari3 | ||
1Department of Mathematics, Payame Noor University(PNU), Tehran, Iran | ||
2Department of Mathematics, Payame Noor University, Tehran, Iran | ||
3Payame Noor University (PNU) | ||
چکیده | ||
In this paper, a synchronization balancing control is proposed based on the contraction theory of stability for inverted pendulum. The control scheme is applied to balance an inverted pendulum mounted on a moving cart with two wheels. The equations of motion of the system are divided into two cascade systems using the control law partitioning method, which allows the designer to split the control design process into simpler parts for each isolated fragment of the main system. Then two control laws are planned for the corresponding partitions. The main aim of the closed-loop system is to balance the pendulum and synchronize the transient behavior of the system state with a reference model with time-varying parameters. The stability of method is guaranteed using the contraction theory, and the proposed control mechanism is investigated through the simulation study. The simulation result confirms the performance of the proposed controller and illustrate the feasibility of method. | ||
کلیدواژهها | ||
Contraction Theory؛ Synchronization Control؛ Inverted Pendulum؛ Cart and Pole | ||
مراجع | ||
[1] M. F. Hamza, H. J. Yap, I. A. Choudhury, A. I. Isa, A. Y. Zimit, and T. Kumbasar, “Current development on using Rotary Inverted Pendulum as a benchmark for testing linear and nonlinear control algorithms,” Mech Syst Signal Process, vol. 116, pp. 347–369, 2019, doi:https://doi.org/10.1016/j.ymssp.2018.06.054.
[2] . Gora, . . Gupta, and A. Dutta, “Energy-Based Footstep Planning of Biped on Uneven Deformable Terrain Using Nonlinear Inverted Pendulum,” J. Mech. obot., vol. 15, no. 5, Nov. 2022. [3] P. Frankovský, L. Dominik, A. Gmiterko, I. Virgala, P.Kurylo, and O. Perminova, “Modeling of Two-Wheeled Self Balancing obot Driven by DC Gearmotors,”International Journal of Applied Mechanics and Engineering, vol. 22, no. 3, pp. 739–747, 2017, doi: doi:10.1515/ijame-2017-0046.
[4] M. van Mierlo, M. Vlutters, E. H. F. van Asseldonk, and H. van der Kooij, “ agittal-plane balance perturbations during very slow walking: Strategies for recovering linear and angular momentum,” J. Biomech., vol. 152, p. 111580, 2023. [5] M. H. Jali, T. A. Izzuddin, R. Ghazali, C. C. Soon, and F. N. Zohedi, “ obust Controller Design with Particle warm Optimization for Nonlinear Prosthetic Hand ystem,” International Journal of Mechanical Engineering and Robotics Research, vol. 6, no. 5, pp. 406–412, 2017, doi: https://doi.org/10.18178/ijmerr.6.5.406-412. [6] M. Jalaeian-F., M. M. Fateh, and M. ahimiyan, “Bi-Level Adaptive Computed-Current Impedance Controller for Electrically Driven obots,” Robotica, vol. 39, no. 2, pp. 200–216, May 2020, doi: 10.1017/S0263574720000314. [7] S. Hanasaki, Y. Tazaki, H. Nagano, and Y. Yokokohji, “ unning Trajectory Generation Including Gait Transition between Walking Based on the Time-Varying Linear Inverted Pendulum Mode,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), 2022, pp. 851–857. doi:10.1109/Humanoids53995.2022.10000112. [8] A. I. Tătaru and M. I. Baritz, “Development of biomechanical gait analysis based on inverted pendulum theory,” IOP Conf Ser Mater Sci Eng, vol. 1256, no. 1, p. 12006, 2022, doi: 10.1088/1757-899X/1256/1/012006. [9] J. Torres-Figueroa, E. A. Portilla-Flores, J. A. VásquezSantacruz, E. Vega-Alvarado, and L. F. Marín-Urías, “A Novel General Inverse Kinematics Optimization-Based Solution for Legged Robots in Dynamic Walking by a Heuristic Approach,” IEEE Access, vol. 11, pp. 2886–2906, 2023, doi: 10.1109/ACCESS.2023.3234315. [10] P. Narayanan, G.; Syed Ali, M.; Iqbal, Mohammed Mujtaba; Kumar, “ ynchronization of fractional-order permanent magnet synchronous generator model based on terminal sliding mode control with switching surface,” Math. Eng. Sci. Aerosp., vol. 12, no. 3, pp. 655–667, 2021. [11] G. Narayanan, G. Muhiuddin, M. S. Ali, A. A. Z. Diab, J. F. AlAmri, and H. I. Abdul-Ghaffar, “Impulsive Synchronization Control Mechanism for Fractional-Order Complex-Valued Reaction-Diffusion Systems With Sampled Data Control: Its Application to Image Encryption,” IEEE Access, vol. 10, pp.83620–83635, 2022. [12] F. Grasser, A. D’Arrigo, . Colombi, and A. C. ufer, “JOE: A mobile, inverted pendulum,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, 2002, doi:10.1109/41.982254. [13] C. A. Ibañez, O. G. Frias, and M. . Castañón, “LyapunovBased Controller for the Inverted Pendulum Cart ystem,” Nonlinear Dyn, vol. 40, no. 4, pp. 367–374, 2005, doi: 10.1007/s11071-005-7290-y. [14] N. Muskinja and B. Tovornik, “ winging up and stabilization of a real inverted pendulum,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 631–639, 2006, doi: 10.1109/TIE.2006.870667. [15] L. B. Prasad, B. Tyagi, and H. O. Gupta,“Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller & LQ ,” in 2011 IEEE International Conference on Control System, Computing and Engineering, 2011, pp. 540–545. doi: 10.1109/ICCSCE.2011.6190585. [16] M. Khoshroo, M. Eftekhari, and M. Eftekhari, “ einforcement learning control of four degree of freedom inverted pendulum,” mdrsjrns, vol. 18, no. 1, pp. 388–396,Mar. 2018. [17] S. Irfan, A. Mehmood, M. T. Razzaq, and J. Iqbal, “Advanced sliding mode control techniques for Inverted Pendulum: Modelling and simulation,” Engineering Science and Technology, an International Journal, vol. 21, no. 4, pp. 753–759, 2018, doi:https://doi.org/10.1016/j.jestch.2018.06.010. [18] E. Franco, A. Astolfi, and F. odriguez y Baena, “ obust balancing control of flexible inverted-pendulum systems,” Mech Mach Theory, vol. 130, pp. 539–551, 2018, doi:https://doi.org/10.1016/j.mechmachtheory.2018.09.001. [19] T. Johnson, S. Zhou, W. Cheah, W. Mansell, R. Young, and . Watson, “Implementation of a Perceptual Controller for an Inverted Pendulum obot,” J Intell Robot Syst, vol. 99, no. 3, pp. 683–692, 2020, doi: 10.1007/s10846-020-011584. [20] B. Goswami and A. Chatterjee, “Balancing a tick With Eyes Shut: Inverted Pendulum on a Cart Without Angle Measurement,” J. Dyn. yst. Meas. Control, vol. 145, no. 4,Feb. 2023. [21] . Israilov et al., “ einforcement learning approach to control an inverted pendulum: A general framework for educational purposes,” PLo One, vol. 18, no. 2, p.e0280071, Feb. 2023. [22] S. Zeghlache, M. Z. Ghellab, A. Djerioui, B. Bouderah, and M. F. Benkhoris, “Adaptive fuzzy fast terminal sliding mode control for inverted pendulum-cart system with actuator faults,” Math. Comput. imul., vol. 210, pp. 207234, 2023. [23] G. M. Moatimid, A. T. El-Sayed, and H. F. Salman, “Dynamical analysis of an inverted pendulum with positive position feedback controller approximate uniform solution,” Sci. Rep., vol. 13, no. 1, p. 8849, 2023. [24] J.-J. E. Lopez, Brett T. and lotine, “Contraction Metrics in Adaptive Nonlinear Control,” ArXiv, 2020, doi: https://doi.org/10.48550/arxiv.1912.13138. [25] B. T. Lopez and J.-J. E. lotine, “Adaptive Nonlinear Control With Contraction Metrics,” IEEE Control Syst Lett, vol. 5, no. 1, pp. 205–210, 2021, doi:10.1109/LCSYS.2020.3000190. [26] B. B. harma and I. N. Kar, “Contraction theory based adaptive synchronization of chaotic systems,” Chaos Solitons Fractals, vol. 41, no. 5, pp. 2437–2447, 2009, doi:DOI:101016/jchaos200809031. [27] W. LOHMILLER and J.-J. E. LOTINE, “On Contraction Analysis for Non-linear ystems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998, doi: https://doi.org/10.1016/S00051098(98)00019-3. [28] W. Lohmiller and J.-J. E. lotine, “Control system design for mechanical systems using contraction theory,” IEEE Trans Automat Contr, vol. 45, no. 5, pp. 984–989, 2000, doi:10.1109/9.855568. [29] I. R. Manchester and J.-J. E. lotine, “Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design,” IEEE Trans Automat Contr, vol. 62, no. 6, pp. 3046–3053, 2017, doi: 10.1109/TAC.2017.2668380. [30] X. Zhang and B. Cui, “ ynchronization of Lurie system based on contraction analysis,” Appl Math Comput, vol. 223, pp. 180–190, 2013, doi:https://doi.org/10.1016/j.amc.2013.07.080. [31] A. Ouannas, I.M. Batiha, S. Bekiros, J. Liu, H. Jahanshahi, A.A. Aly, A.H. Alghtani, “ ynchronization of the Glycolysis Reaction-Diffusion Model via Linear Control Law,” Entropy, vol. 23, no. 11, p. 1516, Nov. 2021, doi:10.3390/e23111516. [32] A. Khooshehmehri, S. Nasrollahi, and M. Aliyari, “Chaos Synchronization in Josephson Junction Using a Nonlinear Model Predictive Controller Based on Particle Filter: Processor in the Loop Implementation,” Int. J. Ind. Electron. Control Optim., vol. 4, no. 3, pp. 355–366, 2021. [33] J. Y. Lau, W. Liang, and K. K. Tan, “Enhanced robust impedance control of a constrained piezoelectric actuatorbased surgical device,” ensors Actuators A Phys., vol. 290,pp. 97–106, 2019. [34] J. Y. Lau, W. Liang, and K. K. Tan, “Adaptive sliding mode enhanced disturbance observer-based control of surgical device,” I A Trans., vol. 90, pp. 178–188, 2019. [35] M. Jalaeian-F, M. M. Fateh, M. Rahimiyan, M. Jalaeian-F., M. M. Fateh, and M. ahimiyan, “Optimal Predictive Impedance Control in the Presence of Uncertainty for a Lower Limb ehabilitation obot,” J. yst. ci. Complex., vol. 33, no. 3, pp. 1310–1329, May 2020. | ||
آمار تعداد مشاهده مقاله: 80 تعداد دریافت فایل اصل مقاله: 175 |